

Optimal Generation Expansion Planning with Integration of Variable Renewables and Bulk Energy Storage Systems

Zhouxing Hu

Ward T. Jewell

Electrical Engineering and Computer Science

Wichita State University

Agenda

Research Scope and Background

Methodology of Modeling

Data Preparation and Test System

Simulation Results

General Conclusions

Research Scope and Background

Research Scope

- How do we respond to the future energy and environmental policies?
- New challenges in the generation expansion planning study: integrating variable resources and energy storage systems.
- Modeling challenge for planning: detailed hour-by-hour operational simulation vs. computational cost.
- MATPOWER: a MATLAB based opensource toolbox suite for academic research purposes.
- Basic formulation: multi-period optimization based optimal planning.

Energy Storage Technologies

System Ratings

Installed systems as of November 2008

P. Denholm, E. Ela, B. Kirby and M. Milligan, "The Role of Energy Storage with Renewable Electricity Generation," Technical Report, NREL/TP-6A2-47187, Jan. 2010.

5

Methodology of Modeling

Objective Function

$$\min_{\theta_{k}, P_{ijt}, R_{i}, I_{j}, IP_{j}, IE_{j}} \left\{ \sum_{j} \left[\tau \sum_{t} C_{j}^{V} P_{gt} + \sum_{i} [C_{i}^{F} (P_{i}^{0} - R_{i})] + \sum_{j} \left[\tau \sum_{t} C_{j}^{V} P_{jt} + (C_{j}^{I} + C_{j}^{F}) (I_{j} + IP_{j} + IE_{j}) \right] \right\}$$

- 1st term hourly production cost (i.e. fuel and O&M cost).
- 2nd term cost savings from retiring units.
- 3rd term additional cost from investing (i.e. constructing and operating) in new units including energy storage.

Constraints

- Variable boundaries
- DC network constraints
- Generation expansion planning constraints

$$0 \le P_{it} + R_i \le P_i^{max}$$
$$P_{jt} \le \delta_{jt} I_j$$
$$\sum I_j^s \le I^{s,max}$$
$$\sum_i \Delta_i R_i \le \sum_j \Delta_j (I_j + IP_j)$$

Energy storage optimal planning constraints

$$0 \le P_{jt}^c \le IP_j$$
$$0 \le P_{jt}^d \le IP_j$$
$$0 \le P_{jt}^c \le \frac{IE_j - E_j^{t-1}}{\eta_j^c}$$
$$0 \le P_{jt}^d \le \eta_j^d E_j^{t-1}$$
$$E_j^t = E_j^{t-1} + \eta_j^c P_{jt}^c - \frac{P_{jt}^d}{\eta_j^d}$$
$$0 \le E_j^t \le IE_j$$
$$E_j^T = E_j^0 = \alpha IE_j$$

MATPOWER's Extendable OPF Framework

Objective function

$$\min_{\mathbf{x},\mathbf{z}} f(\mathbf{x}) + f_u(\mathbf{x},\mathbf{z})$$

1

Constraints

9

$$g(x) = 0$$

$$h(x) \le 0$$

$$x_{min} \le x \le x_{max}$$

$$l \le A \begin{bmatrix} x \\ z \end{bmatrix} \le u$$

$$z_{min} \le z \le z_{max}$$

R. D. Zimmerman, C. E. Murrillo-Sanchez, and R. J. Thomas, "MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education," *IEEE Trans. Power Syst.*, vol. 26, no. 1, pp. 12-19, Feb. 2011.

Data Preparation and Test System

Data Collection

- Resource planning data:
 - Levelized fuel cost and O&M cost in 2015 (\$/MWh)
 - Annual fixed O&M cost in 2015 (\$/MW)
 - Capital cost in terms of annual capital recovery (ACR) in 2022 (\$/MW)
- Energy storage planning data:
 - ACR of power capacity (\$/MW) and energy capacity (\$/MWh)
 - O&M cost (\$/MWh)
 - Cycle efficiency

Average CO₂ Emission Rate (ton/MWh)

Generator Type	CO2 Emission Rate
Coal	0.8333
Natural gas (combustion turbine)	0.5117
Natural gas (combined cycle)	0.3411

$$avg.CO_2 emission rate\left(\frac{ton}{MWh}\right)$$

= $avg.CO_2 emission factor\left(\frac{ton}{MBTU}\right) \times avg.heat rate\left(\frac{MBTU}{MWh}\right)$

Avg. emission factor retrieved from dissertation by Miaolei Shao. Avg. heat rate retrieved from EIA.

12

3-Bus Test System

Typical-Week Profiles of Load and Variable Renewables

- Use four typical weeks (672 hours) to represent the full 8760 hours with each week represents one calendar quarter.
- Typical week profiles preserve the peak and minimal points and effectively represent the changes between hours.
- Normalized wind and solar profiles are applied to the planning model.

Generator Parameters in 3-Bus System

Generator Index	1	2	3	4	5	6
Bus Index	1	2	1	3	3	3
Fuel Type	Coal	Gas	Nuclear	Wind (onshore)	Solar (PV)	EES (CAES)
Existing Capacity (MW)	240	400	160	0	0	0
Maximum Investment Allowed (MW)	∞	∞	×	∞	∞	∞
Maximum Retirement Allowed (MW)	240	400	160	N/A	N/A	N/A
Capacity Factor	0.85	0.87	0.9	0.36	0.40	0.2
Fuel Cost (\$/MWh)	18.70	50 (40)	9.92	N/A	N/A	N/A
O&M Cost (\$/MWh)	6.54	5.00	12.02	8.08	5.76	3
Annual Fixed Cost (\$/MW)	36,780	15,000	93,770	11,980	9,920	0
Annual Capital Recovery (\$/MW)	349,780	101,798	566,373	214,206	273,116	19,433 \$/MW 117 \$/MWh
Cycle Efficiency	N/A	N/A	N/A	N/A	N/A	

Simulation Results

Study Cases for 3-Bus System

Case Number	CO ₂ Price (\$/ton)	Wind and Solar Subsidy (\$/MWh)	Natural Gas Price (\$/MBTU)	EES
1	[0 20 40 60 80 100]	0	5	CAES (best)
2	0	[0 10 20 30 40 50]	5	CAES (best)
3	40	22	[2 4 6 8 10 12]	CAES (best)
4	40	22	8	ALL

Case 1: CO₂ Price [0 – 100 \$/ton], Wind and Solar Subsidy [None], Natural Gas [5 \$/MBTU]

Responses to the increase of CO_2 Price:

- Natural gas technology upgrade
- Coal retirement
 - Renewables investment
 - Energy storage investment
 - Nuclear investment
 - CO₂ emission decreasing
 - Production cost peaking around 60 \$/ton

Case 2: CO₂ Price [None], Wind and Solar Subsidy [0 – 50 \$/MWh], Natural Gas [5 \$/MBTU]

Responses to the increase of renewable subsidy:

- Renewables investment
- Natural gas retirement
- Energy storage investment
 - CO₂ decreasing after 20 \$/MWh subsidy
 - Production cost decreasing after 20 \$/MWh subsidy

Case 3: CO₂ Price [40 \$/ton], Wind and Solar Subsidy [22 \$/MWh], Natural Gas [2 – 12 \$/MBTU]

Responses to the increase of natural gas price:

- Natural gas retirement
- Renewables investment
- Energy storage investment
- CO₂ emission peaking around 4 \$/MBTU of gas price
- Production cost decreasing

Case 4: CO₂ Price [40 \$/ton], Wind and Solar Subsidy [22 \$/MWh], Natural Gas [8 \$/MBTU]

Potential of Bulk EES by Technology

Technology	Level	Power Capacity (MW)	Energy Capacity (MWh)
РН	Worst	0.7	16.7
	Best	67.0	2,401.7
CAES	Worst	0	0
	Best	171.1	8,180.0
Na-S	Worst	0	0
	Best	0	0
VR	Worst	0	0
	Best	5.0	24.7
Li-ion	Worst	0	0
	Best	0	0

General Conclusions

General Conclusions

- Variable renewable resources requires more flexibility from power system operation. Meanwhile, they tend to provide more benefit for bulk energy storage systems by arbitraging energy.
- As bulk energy storage, CAES has the highest potential of the storage technologies studied when operating with high penetrations of wind and solar.
- Lower natural gas price, lack of emission regulation or insufficient renewable incentives reduce the pace of investment on renewables.
- Lower natural gas price (~ 3 \$/MBTU) would phase out the traditional coal-fired plant without the help of emission regulation policies.
- Higher natural gas price (~ 10 \$/MBTU) leads to a notable increment of wind, solar, nuclear and bulk energy storage.

Thank you! Questions / Comments?

