

Constrained Support Vector Machines for PV In-Feed Prediction

IEEE Conference on Technologies for Sustainability 2013 (Sustech), Portland, OR

Marcus Hildmann, Abhishek Rohatgi, Göran Andersson

Agenda

- Renewable In-Feed in Germany
- Characteristics of PV
- Constraint SVM
- Concluding remarks

Motivation: Why PV

- Strong support schemes for PV and wind in Germany
- As a result, we see a large increase wind and PV
- Political decision
 - Goal is the increase of in-feed, no technical problems matter
 - A lot of open and hidden support schemes are in place

Support Schemes

In-feed tariffs for wind and PV

- Prices are independent of market prices
- Tariff is coupled to a technology

The do not have to cover the forecast error

- Additional cost for grid operation occur
- Increase of grid tariffs

Duration of In-feed tariffs is 20 years

• What will happen after the end of the tariffs?

The result of the support schemes:

Increase of more than 20% of PV each year

Source: Revisiting the Merit-Order Effect of Renewable Energy Sources, Marcus Hildmann, Andreas Ulbig, Göran Andersson; Working paper http://arxiv.org/abs/1307.0444

Problems

Consumer Perspective

- High costs because of in-feed tariffs
- Additional hidden costs

Producer Perspective

Flexible power plants are necessary to fill the wholes and forecast errors

Grid Perspective

- Grid has problems to handle the decentralized production
- Higher amount of ancillary services are necessary

We need good forecasts!

Characteristics of PV In-feed

- Seasonal pattern
 - Day-/night pattern
 - Yearly seasonality
- Dependencies
 - Auto dependency
 - Cross dependency
- Weather dependency
 - Cloud coverage
 - Other minor effects

PV time series

Source: European Energy Exchange Transparency Platform http://www.transparency.eex.com/de/

Seasonality of PV

Plot of PV in-feed on hourly basis

Auto- and cross-dependency

Strong auto-correlation and cross-correlation patterns

Dependency on Weather

The dependency on mean temperature is not strong

Estimation Methods

- Linear estimation methods
 - OLS
 - LAD
 - quantile regression
- Nonlinear regression methods
 - Artificial Neuronal Networks (ANN)
 - Support Vector Machines (SVN)
- Bayesian methods
 - Bayesian tracking (Kalman Filtering, Particle Filtering)
 - Markov-Chain Monte Carlo

Why SVM

- External effects
 - Cloud cover, temperature, ..
- Statistical effects
 - Dependencies
- Model questions
 - Unknown model
 - Parameter estimation
- Assumption of normality
 - Natural process, errors are normal distributed

Why constraint methods

- Reduce the chance of over-fitting
- Increase physical boundaries
 - Minimum in-feed
 - Maximum in-feed
- Integration of prediction in the estimation step

Constrained SVM

Classic SVM

$$\min_{w,b,\xi,\xi_{\star}} \quad J_{p}(w) = \frac{1}{2}w^{T}w + c\sum_{k=1}^{N} (\xi_{k} + \xi_{k}^{\star})$$

s.t.
$$y_{k} - w^{T}\phi(x_{k}) - b \leq \epsilon + \xi_{k}, k = 1, \dots, N$$
$$w^{T}\phi(x_{k}) + b - y_{k} \leq \epsilon + \xi_{k}^{\star}, k = 1, \dots, N$$
$$\xi_{k}, \xi_{k}^{\star} \geq 0, k = 1, \dots, N$$

Constrained SVM

$$\min_{w,b,\xi,\xi^{\star}} \quad J_p(w,\xi,\xi^{\star}) = \frac{1}{2}w^T w + c \sum_{k=1}^N (\xi_k + \xi_k^{\star})$$

s.t:
$$y_k - w^T \phi(x_k) - b \le \epsilon + \xi_k, k = 1, \dots, N$$
$$w^T \phi(x_k) + b - y_k \le \epsilon + \xi_k^{\star}, k = 1, \dots, N$$
$$\xi_k, \xi_k^{\star} \ge 0, k = 1, \dots, N$$
$$w^T \phi(x_{\tau}) + b \le \psi, \tau \in \mathbb{S}, \mathbb{S} \subseteq [N+1, \dots, M]$$

Results: Testing Framework

- Data set learning
 - German PV data from March 2012 until February 2013
 - Weather data on daily basis
- Data set prediction
 - German PV March 2013 for comparison
 - Norm weather based on 30 years average on daily basis
- Benchmark
 - Constraint OLS
- Measures
 - Mean absolute prediction error (MAPE)
 - Mean square error (MSE)

In-sample learning

- No constraints on the learning sets
- Statistics both show better performance of SVN (what is not surprising in-sample)

IN-SAMPLE STATISTICAL MEASURES

Measure	OLS	SVM
MAPE	0.61	0.5
MSE	343	279

In-sample learning

- Constraints min in-feed zero
- Statistics both show better performance of SVN out-of-sample
- Small estimation problems during the night

OUT-OF-SAMPLE STATISTICAL MEASURES

Measure	OLS	SVM
MAPE	0.85	0.82
MSE	516	393

Conclusion

- Constrained SVM prediction on PV works
- The algorithm outperforms the constrained OLS by around 20%
- Estimation during night must be improved

Contact Information

Marcus Hildmann hildmann@eeh.ee.ethz.ch

ETH Zürich Department of Information Technology and Electrical Engineering (D-ITET) Power Systems and High Voltage Laboratory Physikstrasse 3 / ETL G 24.2 8092 Zürich

Switzerland