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Variability of Wind
Source: NREL

Wind Generation Variability Results in 
Dispatch Challenges

Alec Brooks (Tesla Motors), Sven Thesen (PG&E). V2G Demonstration and Evaluation Program.  EVS23. (2007)
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Say what you will about Obama Administration regulators, their problem has rarely been a failure to regulate.
Which makes the abdication of the Federal Energy Regulatory Commission especially notable—and dangerous
for the U.S. power supply.

Last week FERC convened a conference on the wave of new Environmental Protection Agency rules that are
designed to force dozens of coal-fired power plants to shut down. The meeting barely fulfilled the commission's
legal obligations, but despite warnings from expert after expert, including some of its own, the FERC
Commissioners refuse to do anything about this looming threat to electric reliability.

The latest body to sound the EPA alarm is the North American Electric Reliability Corporation (NERC), which
last Tuesday released its exhaustive annual 10-year projections. "Environmental regulations are shown to be the
number one risk to reliability over the next one to five years," the report explains.

NERC's forecasts are the gold standard for the U.S. power system because they are built from the bottom up,
starting with finely grained data from individual plants. NERC has been doing this work since 1967, and since
2005 it has operated under the FERC umbrella as an "electric reliability organization" similar to Finra, the
securities regulator with quasi-governmental duties.

The threat is that the EPA is triggering what NERC calls "an unprecedented resource-mix change," with utilities
switching to natural gas from coal. For the first time in U.S. history, net coal capacity is in decline. On top of the
38 gigawatts of generation that is already being run below normal levels or slated for early retirement, NERC
predicts another 36 to 59 gigawatts will come offline by 2018, depending on the "scope and timing" of EPA
demands. That could mean nearly a quarter of all coal-fired capacity.

According to the report, "the nation's power grid will be
stressed in ways never before experienced" and reliability
depends on building new power plants to cover the losses. But
the electric industry has only three years to comply under one
EPA regulation known as the utility rule that is meant to target
mercury and is due to be finalized soon, while many other
destructive rules are in the works.

Replacing power is not like replacing a lost cellphone. There
are bottlenecks in permitting, engineering, financing and
building a new plant and then tying it to the electricity
network. Over this same three-year window, NERC estimates

that between 576 and 677 plants will need to be temporarily shut down to install retrofits like scrubbers or

Dow Jones Reprints: This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues, clients or
customers, use the Order Reprints tool at the bottom of any article or visit www.djreprints.com

If the Lights Go Out
Regulators are letting EPA compromise U.S. electric reliability.
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Research Question and Contribution

Research Questions
what is the capacity contribution of renewable energy sources (RES)?
How to comply with reliability required by regulators?
If using energy storage systems (ESS), how to optimally manage them?
What is the economic cost to all participants in the market?

Contributions
Framework for evaluating dynamic decisions for a SO. Salient features of
physical system explicitly modeled.

Potential for Demand Response, RES, ESS usage by system planners (ISO’s)

Stochastic model does contribute to explain decisions optimally
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Day-Ahead Electricity Market without Random Generators
Problem Setup
Wind capacity task force: [Keane et al.(2010)], Reserve requirements for RES
[Halamay et al.(2011)]

OPF
[Carpentier et al.(1996)]
[Kamat and Oren(2004)], Two Settlement Markets
[Chen et al.(2005)], Co-Optimization
[Condren et al.(2006)], Ex-post evaluation
[Outhred(1998)], [Outhred(1998)], self-commitment
[USCongress(2005)], Reliability Organization
[NERC(2011)], Standards for Operation

UC
[Baldwin et al.(1959)], [Baldick(1995)], UC problem
[Sioshansi and Denholm(2010)], Ancillary Services
[Meibom et al.(2010)], [Papavasiliou et al.(2011)]
[Murillo-Sanchez and Thomas(1998)],
[Bouffard et al.(2005)]
[Wang and Shahidehpour(1995)] Integration UC, OPF
[Bouffard et al.(2006)], Integration UC, SC-OPF

⇓
Proposed Model

Co-optimizing energy and reserves → solve optimal amounts [Chen et al.(2005)]
Use of Network
Economic management of demand
Modeling of renewables uncertainty
Engineering and Economical modeling of Energy Storage Systems (ESS)
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Reserves in the System

Region Requirement Definition

PJM Based on 1% of the peak load during peak hours and 1% of the valley
peak during off-peak hours.

NYISO Set requirement based on weekday/weekend, hour of day, and season.
ERCOT Based on 98.8th percentile of reserve utilized in previous 30 days

and same month of previous year and adjusted by installed wind
penetrations

CAISO Use a requirement floor of 350-MW up and down reserves which can
be adjusted based on load forecast, must-run instructions, previous
CPS performance, and interchange and generation schedule changes.

MISO Requirement made once a day based on conditions and before the
day-ahead market closes.

ISO-NE Based on month, hour of day, weekday/sat/sun.
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Formulation

Stochastic program

f (x) = fp(p, p+, p−) + fr (r+, r−) + fδ(p)

+ flf(δ+, δ−) + fs(psc, psd) (1)

– cost of active power dispatch and redispatch

fp(p, p+, p−) =
∑
t∈T

∑
j∈J t

∑
k∈K tj

ψtjk
α

∑
i∈Itjk

[
C ti

P (ptijk)

+ C ti
P+(ptijk

+ ) + C ti
P−(ptijk

− )
]

(2)

– cost of contingency reserves

fr (r+, r−) =
∑
t∈T

γt
∑
i∈It

[
C ti

R+(r ti
+) + C ti

R−(r ti
−)
]

(3)
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Objective Function

– cost of load-following ramping (wear and tear)

fδ(p) =
∑
t∈T

γt
∑

j1∈J t−1

j2∈J t

φtj2j1
∑

i∈Itj20

C i
δ(ptij20 − p(t−1)ij10) (4)

– cost of load-following ramp reserves

flf(δ+, δ−) =
∑
t∈T

γt
∑
i∈It

[
C ti

δ+(δ+ti ) + C ti
δ−(δti

−)
]

(5)

– cost (or value, since it is negative) of expected leftover stored energy in
terminal states

fs(psc, psd) = −(Cscpsc + Csdpsd) (6)
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Co-Optimization

P0

Pc
P1

P2

P3

Graphically
1 power flow scenario,

high probability case
2 power flow scenario,

low probability case
3 root variable set,

deviations, limits (e.g.
contracts, incs/decs,
reserves)

4 transition constraint

In a nutshell
→ Minimize the Expected Cost of Dispatch over Different States of the
System
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Constraints

Subject to the following constraints

– power balance equations

g tjk(θtjk ,V tjk , ptjk , qtjk) = 0 (7)

– transmission flow limits, voltage limits, any other OPF inequality
constraints

htjk(θtjk ,V tjk , ptjk , qtjk) ≤ 0 (8)
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Constraints

– reserve, redispatch and contract variables

0 ≤ ptijk
+ ≤ r ti

+ ≤ R ti
max+ (9)

0 ≤ ptijk
− ≤ r ti

− ≤ R ti
max− (10)

ptijk − pti
c = ptijk

+ − ptijk
− (11)

– ramping limits on transitions from base to contingency cases

−∆i
− ≤ ptijk − ptij0 ≤ ∆i

+, k 6= 0 (12)

– load-following ramping limits and reserves

0 ≤ δti
+ ≤ δti

max+ (13)
0 ≤ δti

− ≤ δti
max− (14)

ptij20 − p(t−1)ij10 ≤ δ(t−1)i+ , j1 ∈ J t , j2 ∈ J t+1 (15)

p(t−1)ij10 − ptij20 ≤ δ(t−1)i− , j1 ∈ J t , j2 ∈ J t+1 (16)
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The Concept, Reserves

physical
ramp up
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physical
ramp down
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The Concept, Ramping

load following ramp down capacity
load following ramp up capacity
central “high-probability” path

t+3t+2t+1 t+4t time

MW injections
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The Transitions between Periods
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The Concept, Energy Storage

t time
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Input Information
1 PCA on historical data to determine wind sites [NREL(2010)]

2 k-means clustering to specify the scenarios for the
day[Guojun Gan(2007)]

3 Data from New York and New England to calibrate load profile
[NYISO(2011)]

4 Network based on [Allen et al.(2008)], heavily modified
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North East Test network

No changes in generation/load out of NY-NE
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Geographical Location

Details Fleet
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Characteristics of the generation fleet, 36-Bus system

Summary of Generation Capacity and Load, NPCC system

Capacity per Fuel Type (MW) Total Cap. Load

RTO coal ng oil hydro nuclear wind refuse (GW) (GW)

isone 1,840 9,219 4,327 1,878 5,698 0 0 22.9 23.8
marit. 2,424 1,072 22 641 641 0 0 4.8 3.5
nyiso 4,557 18,185 5,265 7,345 4,714 30 55 40.1 38.2
ont. 5,287 3,594 0 779 12,249 0 0 21.9 21.1
pjm 14,453 14,611 8,915 2,604 12,500 0 0 53.1 51,6
quebec 0 0 0 800 0 0 0 800 0

Total 28,562 46,681 18,530 14,048 35,802 30 55 143.7 138.4
Total NYNE 6,397 27,404 9,592 9,223 10,412 30 55 63 62

Rp.C. 30 10 10 60 60 0 60

Back
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How Deferrable Demand is Calculated
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Cases Considered

1 Case 1: Control Wind Case, status quo
2 Case 2: Wind case, 32 GW of wind power capacity added at 16

locations
3 Case 3: Deferrable Demand (DD), 34 GWh of storage energy

capacity at demand centers
4 Case 4: Utility ESS (UE), 34 GWh of of storage energy capacity at

wind sites
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ESS Usage, Arbitrage
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ESS Usage, Uncertainty
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Some Take-Aways

The Markovian modeling of wind transitions and the topology used
lead to capacity value of the wind considered
It is is necessary to implement a layer of information with updated
situational awareness, collecting the measurements necessary to price
the new costs incurred and internalize the ramping of conventional
demand.

c1 (c2 - c1) (c3 - c2) (c4 - c2)

E[Wind Generation] (MWh/day) 0 143,638 16,929 20,502
E[Conventional Generation] (MWh/day) 1,174,081 (143,638) (13,621) (17,381)
LF Ramp-Up Reserve (MW/day) 22,226 60,814 (52,435) (54,302)
LF Ramp-Down Reserve (MW/day) 19,822 55,917 (47,561) (45,058)
Contingency Reserve (MW/day) 21,667 66,414 (64,838) (64,245)
E[Load Shed] (MWh/day) 12.4 0.2 (8.9) (10.1)
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