

Novel Wireless Performance Monitoring for Small Wind Turbines

Joshua D. Freeman, Melvin Sabu, Balakrishnan Shankar, Krishnashree Achuthan

> Amrita Vishwa Vidyapeetham University Amritapuri Campus Kollam, Kerala, India

Introduction - Need for a Small Wind Turbine Monitoring System

- Virtual Labs project
 - Online remote laboratories for engineering education
 - Wind Energy
 - Solar Energy
 - Energy Storage
 - Mechanics of Solids
 - Biotechnology
 - Physics, others
 - Ideal for students in developing countries
 - Quality labs not at all universities
 - Instructor quality can be poor
 - Or students who want to learn on their own schedule
 - Remote labs available 24/7

 Additional instrumentation for research and development or monitoring, test and evaluation purposes
 11-11-2013 Joshua Freeman - Amrita University - Sustech 2013

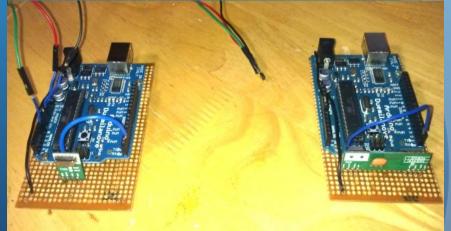
Remote Laboratories - Wind Energy

• Students can

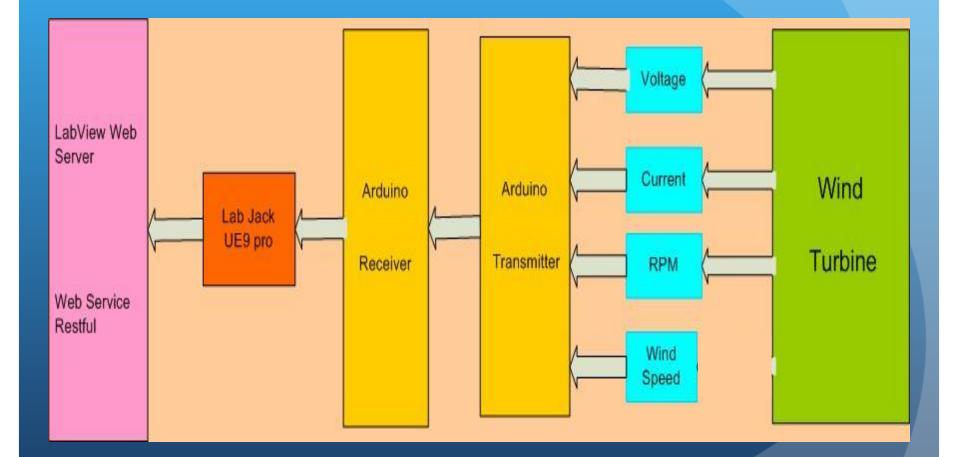
- Log-in remotely
- See live video of the turbine (day/night cameras and IR)
- Measure the real-time performance of a wind turbine
 - Current, voltage
 - RPM
- Measure wind speed and direction (Anemometer)
- Record, download and analyze data
- Calculate
 - Power
 - Coefficient of Performance
 - Tip-speed ratio

Problem

- How do you continuously monitor the rotor speed of a typical small wind turbine?
 - Passive tail vane system for yawing into the wind
 - Slip rings to transfer the power from the generator to the ground
 - 2 or 3 phase generator rectified to DC either at the generator or on the ground
 - Wires will twist up and break
 - Expensive to modify to add additional slip rings


Solution

- Create a wireless system to measure the needed turbine information (at the hub) and transfer it to the tower/ground
 - RF, WiFi, Bluetooth, Zigbee
 - different ranges and data rates
 - We use 433 MHz long range, low data rate sufficient
 - RPM, current, voltage, power factor, yaw direction, or ?
 - We measure the RPM, generator current and voltage
 - Can be either powered by solar PV or by power taken from the generator
 - We are planning for solar PV


Measurement System Design

- Microcontroller Arduino Due
- Sensors
 - RPM Hall Effect with 6 Neodymium magnets
 - Voltage RMS voltage
 - Current RMS current
- Wireless 433 MHz RF Rx/Tx
- Labjack DAQ card UE9 Pro
 - Ethernet enabled
- Labview w/ web server

Architecture

11-11-2013

System Testing

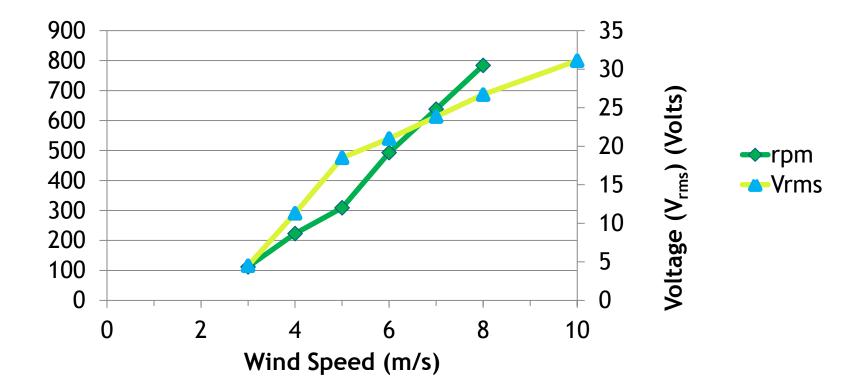
11-11-2013

System Testing

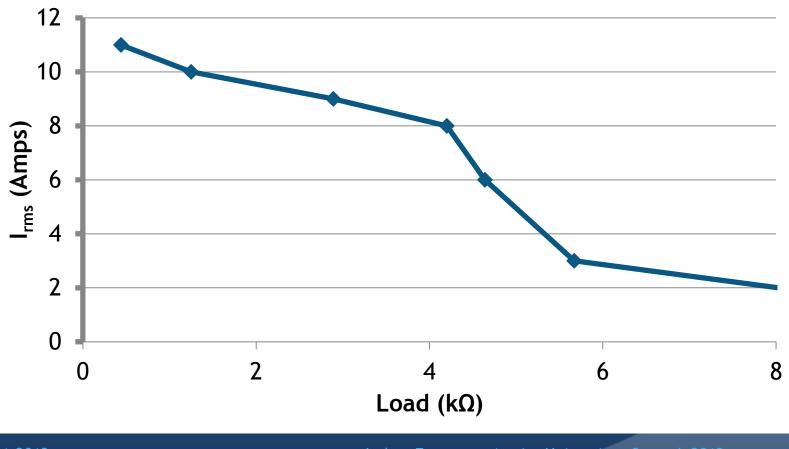
Joshua Freeman - Amrita University - Sustech 2013


Test Loading and Measuring

11-11-2013


AMRITA VISHWA VIDYAPEETHAM UNIVERSITY Established U/S 3 of the UGC Act 1956 Testing - Labview, Labjack and Anemometer

RPM and Voltage measurement testing


RPM and V_{rms} vs. Wind Speed (unloaded)

Current Measurement Testing

Current (I_{rms}) vs. Loads ($k\Omega$) at 9 m/s Wind Speed

11-11-2013

Rx/Tx Range Testing Results

Distance	RSSI	RSSI
(meters)	(Line of sight)	(No line of sight)
5	100%	100%
10	100%	100%
20	100%	100%
50	100%	90%
70	100%	80%
90	85%	68%
100	80%	55%
120	75%	50%

11-11-2013

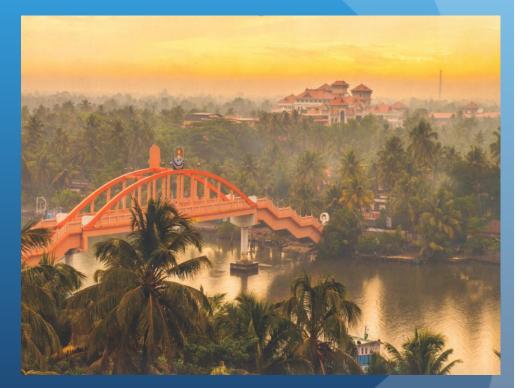
Conclusions and Future Work

- System tested thoroughly in the lab
- Operates as planned
- Add solar PV power purchasable module for Arduino
- Fit system on a turbine with space for a torque meter
 Calculate the Mechanical Coefficient of Power
- Measure the power factor
- Weatherproof polycarbonate enclosure
- Install the turbine on our beach!
- Add balance of system components
- Host the experiment on our Virtual Labs website

11-11-2013

Acknowledgements

- The Virtual and Accessible Laboratories Universalizing Education - VALUE @ Amrita Virtual Labs Project is sponsored by the Indian Ministry of Human Resources Development (MHRD) National Mission on Education through Information and Communication Technology (NMEICT)
- http://amrita.vlab.co.in/


Thanks!! Questions??

Contact Information:

Joshua Freeman joshdfreeman@am.amrita.edu

Amrita University College of Engineering Clappana P.O. Kollam, Kerala 690525 India

Phone: (+91) 0476-280-4145 Mobile: (+91) 9447498818

11-11-2013