WAVE ENERGY CONVERTER MODELING IN THE TIME DOMAIN: A DESIGN GUIDE

BRET BOSMA

SUSTECH

8/1/2013

OCEAN WAVE ENERGY

Ocean energy is a significant source in several forms
 Tidal

- Current
- Temperature gradient (OTEC and SWAC)
- Salinity
- •Wave

- Compared to other renewables, wave energy has advantages:
 Higher availability
 More predictable and forecastable: up to 10 hours forecast time
 Low viewshed impact
- At present, wave energy is estimated at 20-30 cents per kWh. Coal and wind are 5 to 10 cents per kWh.
- Wave power is about 20-30 years behind wind, but it is predicted that wave power can catch up quickly.

WAVE ENERGY POTENTIAL

• 2010 OMAE (Assesing the Global Wave Energy Potential)

- 32400 TWh/year potential
- 2011 EPRI study
 - United States
 - 1170 TWh/year potential
 - Oregon
 - Inner shelf 143 TWh/year potential
- US Electricity use 2010
 - 4143 TWh/year

WAVE POWER DENSITY (kW/m)

NORTHWEST NATIONAL MARINE RENEWABLE ENERGY CENTER (NNMREC)

- Investigate technical, environmental, and social dimensions of Marine and Hydrokinetics
- Advance Ocean Wave Energy Industry by assisting developers
 - Device design
 - Development
 - Testing
 - Evaluation
 - Integration

- Oregon State University University of Washington
- Lower Levelized Cost of Energy
- Time domain modeling

WAVE ENERGY CONVERTER (WEC) TIME DOMAIN MODELING

Time Domain Formulation and Analysis (Nonlinear) – Relatively moderate simulation time/More detailed analysis possible

- MATLAB/Simulink
 - Heave only

GENERIC WEC MODEL

HYDRODYNAMICS

ſ

EQUATIONS OF MOTION

 $F_{e1}(t) - F'_{r11}(t) - F'_{r21}(t) - F_{hs1}(t) - F_{pto}(t) - F_{v1}(t) = (M_1 + m_1(\infty))\ddot{z}(t)$

 $F_{e2}(t) - F_{r22}'(t) - F_{r12}'(t) - F_{hs2}(t) + F_{pto}(t) - F_{v2}(t) - F_m(t) = (M_2 + m_2(\infty))\ddot{z}(t)$

SIMULINK MODEL

)

EXCITATION IMPULSE RESPONSE FUNCTION

EXCITATION FORCE

 \cap

REGULAR WAVE OUTPUT

Introduction of system nonlinearities can identify significant power loss not modeled in the frequency domain simulations.

IRREGULAR WAVE OUTPUT

Similar nonlinearities could be added to the relative displacement and mooring.

CONCLUSIONS

- Time domain simulation of generic WEC
- Adaptable to geometry or device type
- Introduction of nonlinearities to model
- Results for any input waveform