

Development of Low-Profile Peizoelectric Energy Harvester for High Load Application

Thorin Purviance, Spencer Wickler, Keith Clayson, Travis Barnes, and Changki Mo School of Mechanical and Materials Engineering

Background

Lead zirconate titanate(PZT)

Generates electrical energy when excited by mechanical load

Harvest useful energy from existing mechanical loads

Possible Uses

- Orthopedic implants such as total knee replacement (TKR)
 - Imbedding space is typically confined but power is required to operate embedded sensors monitoring the state of implants
 - Analysis carried out based on this assumption
 - 2100N, 1Hz

 Low-profile power generator for floors and roadways could also be explored

Previous Designs

- Cymbal is used to transform mechanical load into a tensile force
- Tension yield strength of piezoelectric material is a limiting factor
 - Arrows in Fig. 1 represent the radial tensile stress due to compressive load applied to the metal end caps.

Figure 1: Comparison of Previously Explored PZT Cymbal Structures: (a) Unimorph [1-3] and (b) Bimorph [4].

Iteration one

- Places the PZT material in compression rather than tension
- Slight inadvertent hoop stresses in tension was a limiting factor

Iteration two

All PZT Material is in compression

Second Iteration Fabrication Design

- The cymbals were fabricated from circular metal discs cut out by a water jet
- Discs were cut out from a sheet of 1.5mm thick 4140 alloy steel
- Discs were then pressed in a die to form the cymbal shape

Second Iteration Assembly

Analysis

 The cymbal can be viewed as a truncated conical shell to calculate stress in the radial direction

- This radial stress is then combined with PZT properties
- After derivation, the power equation becomes

$$U_{gen} = \frac{1}{2} C_{free} V_{gen}^2$$

Test Apparatus

- Load applied by linear motor through load cell
- Controlled by LabVIEW
- Arduino interface
- Data acquired through digital storage oscilloscope

Experiment

- Cymbal specimen was tested on the test apparatus using cyclic loads of 800 N, 1500 N, and 2100 N at a frequency of 1 Hz
- Tested with two configurations in parallel and in series

Test Results for Iteration Two

 Measured cyclic load and open circuit voltage for 800N in series configuration

Test Results for Iteration Two

 Measured cyclic load and open circuit voltage for 1500N in series configuration

Test Results for Iteration Two

 Measured cyclic load and open circuit voltage for 2100N in series configuration

Summary of Test Results

- Currents were also measured for each load. The measured currents were 2.9 μA, 6.8 μA, and 9.7 μA for 800 N, 1500 N, and 2100 N, respectively
- Here is a summary of the actual measured output voltage from iteration two with a cyclic frequency of 1Hz

Load (N)	Measured output voltage (V)
800	10.58 ± 2.67
1500	23.9 ± 1.38
2100	34.50 ± 1.33
±: sample standard deviation from nineteen peaks	

Conclusions

- The restructured cymbal harvester with four sets of PZT stacks generates higher energy in parallel than that of unimorph cymbal design.
- May also provide better longevity performance because there is no bonding layer
- Longevity tests to be carried out in the near future.
- Comprehensive analysis to predict generating energy and parametric study for performance optimization is currently conducting

World Class. Face to Face.

Questions?