

Modeling and simulation of the microalgae derived hydrogen process in compact photobioreactors 1 Aug 2013 – Portland, OR, USA

<u>J. V. C. Vargas, D. A. Mitchell, A. B. Mariano, and D. O. Corrêa</u>

Microalgae review, International Journal of Energy Research, Vol: 35 No.: 4 pp: 291-311 Mar 2011

Nilko

1.Introduction 2.Bibliographic Review **3.Materials and methods** 4.Results and Discussion **5.**Conclusions **6.Suggestions**

The USA currently imports more than 60% of its petroleum.

2/3 of it go to transportation fuels

140 x 10⁹ gallons of gasoline/year 44 x 10⁹ gallons of diesel/year

MICROALGAE are the unicelular algae with great photosynthetic capability and rapid growth due to their simple structure.

MICROALGAE comprise the *phytoplankton* and are the basis of the aquatic food chain.

AUTOTROPHIC – are energy primary producers

MICROALGAE METABOLISM

Biodiesel production

- Triglycerides are converted first to diglycerides, monoglycerides and then to glycerol
- The equilibrium reaction requires 3 mol of alchohol per mol of triglyceride. Industrial processes use excess alcohol to ensure it is in the direction of the methyl esteres
- The reaction is catalyzed by using acids and alkali. Alkali catalyzed transesterification is 4000 times faster (sodium and potassium hydroxide). Sodium-methoxide.
- T= 60°C
- Reaction takes place in about 90 minutes

CROP	OIL (L/ha)	LAND AREA NEEDED (M ha)	PERCENT OF EXISTING US CROPPING AREA ^a
Corn	172	1540	846
Soybean	446	594	326
Canola	1190	223	122
Coconut	2689	99	54
Palm oil	5950	45	24

^a For meeting 50% of all transport needs of the US

(Chisti, 2007 e Chisti, 2009)

MICROALGAE CULTIVATION

Raceway ponds

Inexpensive operation

Simple construction

- High losses via evaporation

- Problems of contamination

Photobioreactors

- -More expensive construction (~10x)
- More engineering
- Less evaporation
- Better CO₂ use
- -Better mixing
- -higher biomass concentration (easier harvesting)
- -volumetric biomass productivity (~13 x)

PROJECT LOCATION IN BRAZIL

NPDEAS LAY-OUT

CULTIVATION IN PHOTOBIOREACTORS

ENERGIA AUTO-SUSTENTÁVEL NÚCLEO DE PESQUISA E DESENVOLVIMENTO

RACEWAY POND

TUBULAR AND HORIZONTAL PHOTOBIOREACTORS

MODULAR PHOTO-BIOREACTOR

Photoinhibition

Sunlight intensity

Hydrogen

Combustível:	Valor do Poder Calorífico Superior (a 25º C e 1 atm)	Valor do Poder Calorífico Inferior (a 25º C e 1 atm)
Hidrogénio	141,86 KJ/g	119,93 KJ/g
Metano	55,53 KJ/g	50,02 KJ/g
Propano	50,36 KJ/g	45,6 KJ/g
Gasolina	47,5 KJ/g	44,5 KJ/g
Gasóleo	44,8 KJ/g	42,5 KJ/g
Metanol	19,96 KJ/g	18,05 KJ/g

Biohydrogen

- 1. Direct Biophotolysis
- 2. Indirect Biophotolysis
- 3. Photofermentation
- 4. Dark fermentation
- 5. Hybrid systems

(stage 1 – aerobic)

 $12 \text{ H}_2\text{O} + 6 \text{ CO}_2 + \text{light energy} \mapsto \text{C}_6 \text{ H}_{12} \text{ O}_6 + 6 \text{ O}_2 \quad (1)$ (stage 2 – anaerobic)

 $C_6 H_{12} O_6 + 6 H_2 O + light energy \mapsto 12 H_2 + 6 CO_2$ (2)

2. BIBLIOGRAPHIC REVIEW

Electron transport pathways related to hydrogenase in green algae. The electrons could originate in the water photolysis or in the plastoquinone through cellular substrates oxidation via glycolysis or in the Krebs cycle. (MELIS and HAPPE, 2001).

Challenges:

- 1. Low hydrogen generation rate
- 2. High cost
- 3. GMO
- 4. Engineering PBR; contamination; purification, separation
- 5. Sensitivity to oxygen
- 6. Co-products (e.g., biodiesel)
- 7. Mathematical modeling

General objective:

H₂ production mathematical modeling

Specific objectives:

- 1. Mathematical model
- 2. Low computational time
- 3. Experimental comparison
- 4. Case study

$$V^{(j)} \frac{dy_{O_2}^{(j)}}{dt} = \frac{\dot{m}}{\rho} \left(y_{O_2}^{(j-1)} - y_{O_2}^{(j)} \right) + V^{(j)} y_{alga}^{(j)} R_{y_{O_2} / y_{alga}} \left(\mu - \alpha \right)$$

alga Scenedesmus almeriensis (SÁNCHEZ et al., 2008)

A. Mesh and boundary conditions

The PBR measures $(5 \text{ m} \times 2 \text{ m} \times 8 \text{ m})$. The converged mesh

according to Eq. (21) had a total of 6048 VEs.

The conditions for the cases considered in this work were: 1. Average sun irradiation: 500 W m⁻² (day) and 0 W m⁻² (night);

2. Side wind through one of the faces as desired. In this work, the wind flow was assumed from east to west: 5 m/s;

3. PBR temperature regime: between $T_{min} = 283$ and $T_{max} = 303$ K, and

4. Two simulation periods: 15 e 17 days, always beginning at 5 AM.

user: jvargas Mon Mar 4 11:38:51 2013

Fig. 5. Dry biomass versus cell number correlation.

Fig. 6. The comparison between numerical and experimental results for PBR microalgae growth.

Fig. 7. PBR microalgae mass fraction time evolution for 17 simulation days with aerobic (10 days) and anaerobic (7 days) stages.

Fig. 8. PBR CO₂ mass fraction time evolution for 17 simulation days with aerobic (10 days) and anaerobic (7 days) stages.

Fig. 9. PBR O₂ mass fraction time evolution for 17 simulation days with aerobic (10 days) and anaerobic (7 days) stages.

Fig. 10. PBR H₂ mass fraction time evolution for 17 simulation days with aerobic (10 days) and anaerobic (7 days) stages.

- 1. Indirect photolysis mathematical model has been developed
- 2. Low computational time application
- 3. Experimental validation for microalgae growth
- Case study expected trends have been observed

6. SUGGESTIONS

- 1. Prototype (HGP "Hydrogen Generation Photobioreactor")
- 2. Different green algae species for hydrogen generation
- 3. Complete characterization of the obtained fuel (e.g., purity)
- 4. Mathematical model improvement and experimental validation
- 5. Process thermodynamic optimization (numerical)

ENERGIA AUTO-SUSTENTÁVEL úcleo de pesquisa e desenvolvimento

CURITIBA - PR

CENTRO PO

Fax. +55 (41) 3361 - 3129 <u>andrebmariano@gmail.com</u> Tel. +55 (41) 3361 - 3307 Fax. +55 (41) 3361 - 3129 <u>ivargas@demec.ufpr.br</u>

Tel. +55