easy street.

Data Center
Design and
Energy
Management

Steve Knipple
CTO / VP Engineering
& Operations
August 1, 2013

HEREIS NESS

Agenda

- Introduction to EasyStreet
- → Speaker Bio
- EasyStreet Sustainability
- Data Center 1 (Retrofit completed May 2010)
- Data Center 2 (Opened January 2011)

Who is EasyStreet?

Oregon-based colocation and cloud services provider

- 3 Independent Data Centers: 2 in Beaverton, 1 in downtown Portland
- Disaster Recovery Data Center in Phoenix, AZ
- 24 x 7 x 365 on site Enterprise Operations Center (EOC)
- Large (and growing) catalog of cloud service offerings
- In business since 1995

→ Sustainability is part of our culture and a focus from the start

- Carbon neutral, we offset all resources consumed in our Beaverton facilities:
 - 100% electricity offset by PGE Clean Wind
 - 100% city water offset by Water Restoration Certificates
 - 100% natural gas offset by NW Natural Smart Energy
- Latest energy efficient technology in our Data Centers
- Highly utilized computing hardware through virtualization
- E-Recycling of old computer equipment

Speaker Bio

Steve Knipple – VP Engineering and Operations

- Joined EasyStreet in May 2010
- Wisconsin native, traveled a lot, settled in Oregon
- Education: Mechanical Engineer and Information Management
- 15 years of experience working in nationally and internationally in Information Technology and Engineering.
 - Passionate about using real-time and historical automated data collection to drive improvements

EasyStreet Green Recognition

- 2012 Oregon Governor's Sustainability Award (Technology)
- Portland Office of Sustainable Development BEST Award Winner, 2011 and 2012

- Ranked in *Oregon Business Magazine's* 2009 2011 "100 Best Green Companies to Work for in Oregon"
- → Named PGE's 2008 "Green Power Leader"

Data Center 1 Retrofit

- Hot aisle containment project
 - Allowed two CRAC units to be turned off
 - Reduced AC maintenance costs by up to \$10,000/year
 - Will save 524,000 kWh/year with a payback in 18 months
 - Improves customer equipment reliability with a more uniform supply of cold air
 - Sensors provide ongoing monitoring for fine-tuning
- --- Power monitoring
- Additional "green" upgrades include flywheel UPSs
 - No battery storage
- Tested new technologies and methodologies to improve design and reduce risk in the new facility

Thermal Imaging

Thermal Modeling (by Row)

Thermal Imaging (Entire Data Center)

One example: Tuning CRAC units to stabilize operation

We try to monitor EVERYTHING: Inside/outside temps, humidity, CRAC utilization, power usage etc. Always looking for new ways to optimize.

Green IT Press Event, July 2010

- Received \$65,000 from ETO for hot/cold aisle containment project
- Recognized for new data center expansion
- Shared information and resources with like-minded attendees

- Rich Bader, EasyStreet
- Oliver Kesting, Energy Trust of Oregon
- Jon Haas, Intel
- Denny Doyle, Mayor of Beaverton

What Else did We Learn in the Retrofit?

It's difficult to retrofit old data centers

- Often designed without energy management in mind
- Fundamental design can limit cost effective changes
- The best solution is not always obvious

Little things can make a big difference

- Inventory equipment and shut off everything that is not being used
- Raise the temperature... a DC is not a refrigerator
- Shut off lights
- Rack computer equipment cleanly to allow for proper airflow
- Consolidate load in less physical space
- At some point you need to start from scratch...

Designing a Green Data Center

- An unprecedented group design effort with shared goals:
 - Maximize energy efficiency to reduce energy consumption and costs
 - Accommodate growth and energy efficiency improvements over time
 - Help customers improve the power efficiency of their IT equipment
 - Reduce overall carbon footprint
 - Improve Power Usage Effectiveness (PUE)

Data Center Efficiency

- Expressed as Power Usage Effectiveness (PUE) by The Green Grid
 - Perfect PUE = 1.0
- Typical data center today = 2.0

Our "Showcase" New Data Center

- Highly sustainable design and operation
 - Lessons learned from existing DC efficiency projects

- First data center project to qualify for ODOE Small Scale Energy Loan Program
- Highly efficient and sustainable energy usage
 - Power Usage Effectiveness (PUE) estimated at <1.3</p>
 - 100% PGE Clean Wind
 - High power density of 5kW/cabinet average
 - Efficient power use buffers future energy cost increases
- Indirect Evaporative Cooling with hot air containment
 - Supplemental AC typically needed ~15 days/year
 - Rainwater capture system

Highly Efficient Cooling System

- Indirect Evaporative Cooling (IEC) units in an N+2 configuration
 - Any spare unit can replace any failed unit for seamless restore
- Passive chimney cabinets gather hot exhaust air and route it to the roof units for processing
 - Highly efficient for reduced energy consumption and cost savings
 - Supplemental DX system needed only 180 hours/year
 - More power available for IT equipment
 - Underground storage tank holds 24-hours of harvested rainwater (with city water backup)

Roof-Top Mounted IEC Units

The Speakman indirect evaporative coolers (IEC) are roof-top mounted high efficiency units which use outside air to cool water which is then used to cool the data center exhaust air stream. Each unit contains a small cooling tower, a scavenger fan blowing outside air over the "hot side" of the IEC coils, and VFD-controlled main fan moving the data center air stream over the "cold side" of the IEC coils.

Roof-Top Mounted IEC Units

Supply and Return Ductwork

The Finished Data Center

One example: Chimney temperature for a 1.8kW load

We expect a temperature change of 25 degrees F for 4kW of IT load.... right on target!

Even better benefits when you control the load

- Cloud computing generates efficiency through consolidation
 - Virtualization
- Managing peak loads and responding to low demand
 - Server at idle used 60% of power
 - Server at 100% uses 90% of power
 - Dynamically and non disruptively moving load to shut down excess capacity is key.

If You Want to Learn More...

You are always welcome to visit!

- → Steve Knipple
- → 503-601-2617
- stevek@easystreet.com

