Reliability-Driven Optimum Standby Electric Storage Allocation for Power Distribution Systems

Salman Kahrobaee Dr. Sohrab Asgarpoor

Department of Electrical Engineering University of Nebraska Lincoln

Nebraska center for

Lincoln ENERGY SCIENCES RESEARCH

Outline

- Introduction
- Study Approach
- Case Study
- Results
 - Base Case
 - Impact of Standby Electric Storage
 - Reliability
 - System Cost
 - Optimum Standby Electric Storage Capacities
- Conclusion

Introduction

- Significance of Power System Reliability:
 - Aging power system infrastructure
 - Fast load growth
 - High customer expectations
 - Sensitive electronic devices
 - Integration of intermittent power generation
- Power System Reliability:
 - Generation
 - Transmission and substation
 - Distribution (85% of outage hours)
- Distribution System Reliability Evaluation
 - System indices
 - Load-point indices

SusTech 2013

Nebraska Center FO

Introduction

- Integration of Distributed Energy Resources (DER) in Distribution Systems
 - Distributed generation (wind, solar, etc.)
 - Energy storage (battery, etc.)
- Standby Electricity Storage System
 - Decrease in load interruption
 - Improvement of power restoration

Study Approach

• Determine the optimum the set of standby storage capacities which minimize the Total Cost.

Study Approach

• Objective Function:

$$Total Cost = EIC + \sum_{k=1}^{N} C_{store}(Cap_{L_k})$$

Subject to (for each contingency):

 $V_{n,min} < V_n < V_{n,max}$: n = {1,2,3, ... N_B)

 $P_m < P_{m,max}$: m = {1,2,3, ... N_{Lines/Transformers})

Case Study

Distribution System with Four Integrated DER

Case Study

Input Data:

Distribution System Statistics

No. of busbars	86
No. of lines	92
No. of transformers	13
No. of loads	56
No. of customers at LP1	440
No. of customers at LP2	460
No. of customers at LP3	320
No. of customers at LP4	60

Failure and Repair Data

Component	Failure rate	Repair duration
Underground Cables	0.01/(km, year)	128 hrs
Overhead Lines	0.015/(km, year)	54 hrs
Power Transformers	0.006/year	116 hrs
11kV Busbar	0.009/year for terminal; 0.015/year per connection	7 hrs
33kV Busbar	0.006/year for terminal; 0.015/year per connection	12 hrs

Duration (min)

Case Study

Load Flow Data:

Load Flow Results

Parameters	Without DER	With DER (Base Case)
Peak Load at LP1	4.32 MW	2.75 MW
Peak Load at LP2	3.98 MW	2.53 MW
Peak Load at LP3	2.77 MW	1.76 MW
Peak Load at LP4	0.52 MW	0.33 MW
Total System Peak Load	53.4 MW	48.4 MW
Total System Power Loss	1.4 MW	1.15 MW

Results

• Base Case:

System Reliability Indices

System Reliability Indices (Base Case)				
SAIFI 1/(customer, year)	SAIDI hrs/(customer, year)	SAIDI Istomer, year)		EIC (k\$/year)
0.46	4.02	0.99954	145.5	184

Load Point Reliability Indices

Location	Load Point Reliability Indices (Base Case)			
	LPIF (1/year)	LPIT (hrs/year)	LPIC (k\$/year)	LPENS (MWh/year)
LP1	0.47	3.39	30	8.9
LP2	0.34	3.11	16.2	7.5
LP3	0.36	2.63	7.78	4.3
LP4	0.58	5.24	0.5	1.8

Results

Impact of Standby Electric Storage at LP1

- Levelized cost of standby storage 35,000 200,000 195,000 (\$/year) 30,000 190,000 25,000 185,000 cost (180,000 (\$/year) 20,000 175,000 15,000 Total 170.000 165,000 10,000 ø 160,000 ũ 5,000 Ξ 155,000 150,000 0 0 250 500 750 1000 1250 Standby Storage Capacity (kWh) Levelized Cost of Standby Storage Total Cost EIC
- Impact of Standby Electric Storage at LP1-LP4

Lincoln NEBRASKA CENTER FOR Lincoln ENERGY SCIENCES RESEARCH

Nebraska

Results

Optimum Standby Storage Capacities

Load Point Reliability Indices with Optimum Capacities

	Load Point Reliability Indices (With Optimum Standby Storage Capacities)			
Location	LPIF (1/year)	LPIT (hrs/year)	LPIC (k\$/year)	LPENS (MWh /year)
LP1	0.47	3.1	20	5.8
LP2	0.34	3.05	16.1	7.35
LP3	0.36	2.62	5.4	3.1
LP4	0.53	4	0.2	0.6

Nebraska CEN

Conclusions

- Optimum Capacities of Standby Electricity Storage system
 - Reliability analysis
 - State enumeration
 - Power flow
 - Particle swarm optimization method
- To Minimize:
 - system cost of interruption + Cost of standby storage capacity
- The Total Cost Dropped by 10% with the Optimum Capacities
 - Standby Electricity Storage Could be Cost Effective

Thank You

• Question ?

