

Agenda

iNEMI Overview

Technology Roadmap

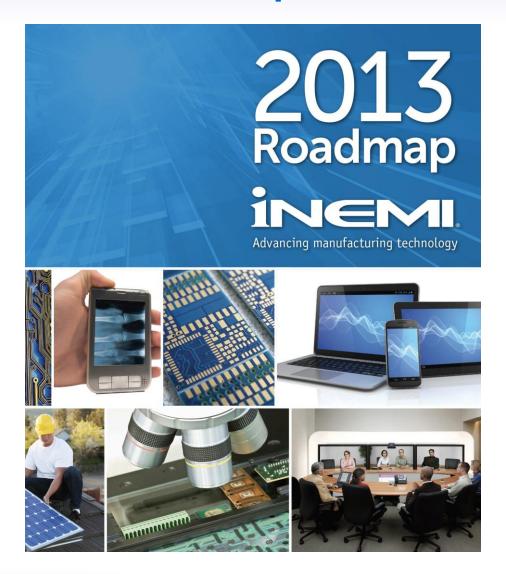
Environmentally Sustainable Electronics; Methodology, History, Success Examples

Key Environmental Challenges form the 2013 Roadmap

Conclusions and Summary

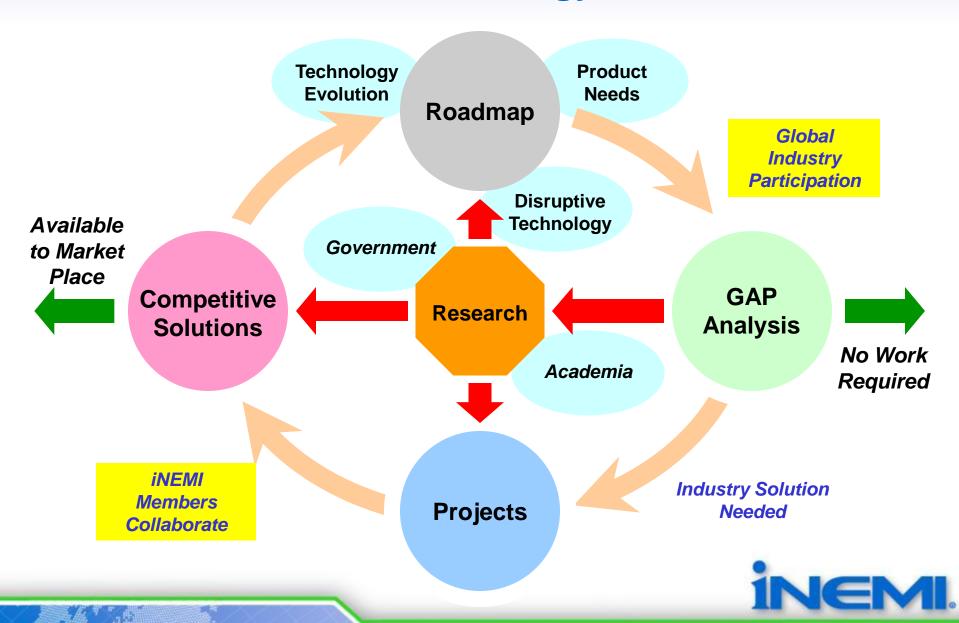
Q & A, Discussion

International Electronics Manufacturing Initiative (iNEMI)

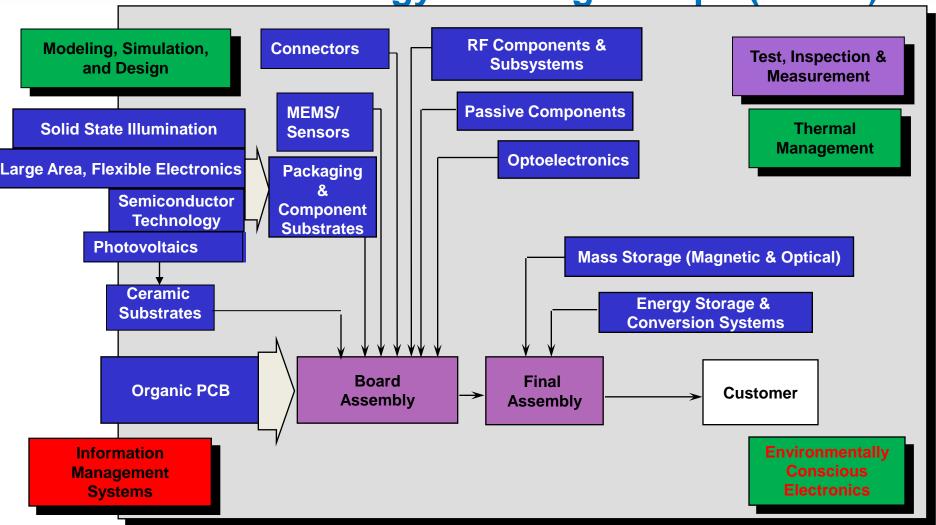

- Not for profit, highly efficient R&D consortia since 1994
 - Funded by Corporate memberships Staffed globally in US, China & Ireland
- Membership includes 110 leading industry companies & organizations, representing a cross section of our electronics manufacturing industry & supply chain

INEMI Mission: Forecast and accelerate improvements in the Electronics Manufacturing Industry for a sustainable future.

We Accomplish This By:


- Being the recognized leader at projecting future technology needs for the global supply chain (iNEMI Technology Roadmap).
- Guiding and leveraging the strength of the consortium's industry leading international membership.
- Driving high impact collaborative R&D Results through constantly improving methodologies.
- Defining and implementing science based sustainable solutions in high impact areas including the environment and health care.
- Influencing and leveraging key government agencies and labs (iNEMI Research Priorities Document).
- iNEMI has currently 23 collaborative R&D projects and initiatives that address key technology gaps
- Projects typically have 10-20 member companies/institutions

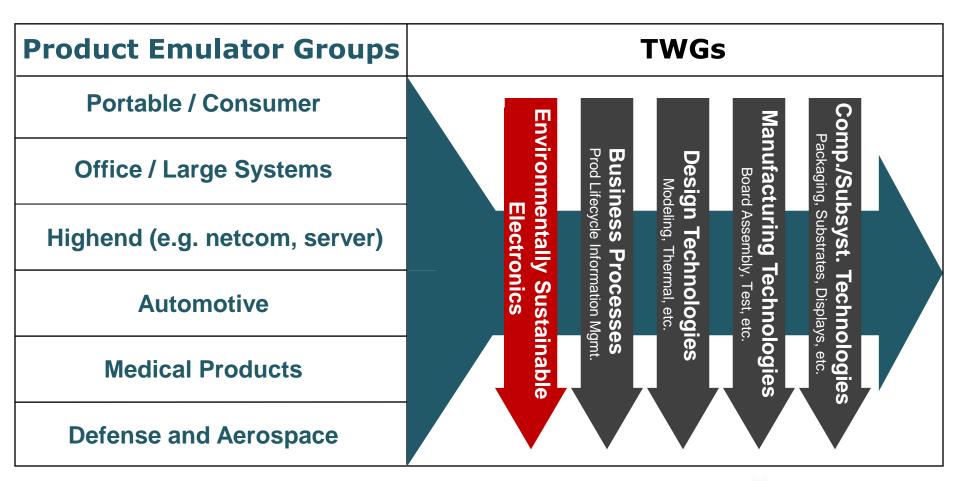
The 2013 iNEMI Roadmap; Process and Scope



Methodology

2011 Technology Working Groups (TWGs)

Red=Business


Green-Engineering

Purple=Manufacturing

Roadmap Development

Product Sector Needs vs. Technology Evolution

Statistics for the 2013 Roadmap

- > 650 participants -- Big Thanks to All Contributors!!
- > 350 companies/organizations
- 18 countries from 4 continents
- 20 Technology Working Groups (TWGs)
- 6 Product Emulator Groups (PEGs)
- > 1900 pages of information
- Roadmaps the needs for 2013-2023
- Workshops held in Europe (Berlin, Germany), Asia (Hong Kong)
 North America (ECTC, San Diego, CA) in May 2012
- A Full Global Perspective
- Available to iNEMI members on 12/28/12 at: www.inemi.org
- Available to industry beginning April 4, 2013 at <u>www.inemi.org</u>

ELECTRONICS PRODUCTION 2009 - 2021

\$Bn	2009	2011	2013	2015	2021	CAAGR '09-'15	CAAGR '15-'21
Computers and Office	\$396	\$433	\$474	\$500	\$617	4.0%	3.6%
Communications Infrastructure Equipment	\$157	\$174	\$192	\$213	\$281	5.2%	4.7%
Consumer and Portable Electronics	\$298	\$319	\$341	\$400	\$479	5.0%	3.1%
Automotive Electronics	\$105	\$129	\$158	\$161	\$237	7.4%	6.6%
Medical Electronics	\$77	\$85	\$93	\$103	\$134	5.0%	4.5%
Military and Aerospace Electronics	\$118	\$129	\$140	\$151	\$189	4.2%	3.8%
Total Electronics Production	\$1,242	\$1,382	\$1,541	\$1,679	\$2,171	5.2%	4.4%

Note: Total includes product categories not included in iNemi segmentation

Courtesy PrismarK Partners LLC

Electronics Business Situation Analysis

- Convergence
 - Medical-Consumer
 - Automotive-Entertainment
 - Communication-Entertainment
 - Telecom-Datacom
- Miniaturization and Thinner; Speed of Change Escalating
- Quality, reliability, cost still paramount
- Counterfeit Products a growing issue
- Infrastructure (Business Model) changes:
 - Growth of "The Cloud"
 - Fabless Semiconductor Fabrication
 - EMS and ODM roles grow; R&D Challenges
- Rare Earth and Conflict Materials
- Carbon foot print & Material Data Reporting Requirements
- Energy Storage & Usage Growing in Importance
 - Rapid spread of Consumer electronics
 - Solid State Lighting
 - Electric and Hydrogen Vehicles
 - Opportunities for smart grid

Situation Analysis: Technology

- Consumers' demand for thin multifunctional products has led to increased pressure on alternative high density packaging technologies.
 - 3D IC with TSV
 - SiP still key
 - Technology driver for small components, packaging, assembly processes and for high density substrates
 - Sensors and MEMs:
 - Exponential volume growth driven by portable products
 - Motion gesture sensors expanding use of 2D-axis & 3D-axis gyroscopes
 - Segment maturing, encouraging industry collaboration
- Semiconductor Scaling Limit Near
 - Definition of future requirements moving to "More than Moore"
- Product miniaturization and speed/voltage are challenging the movement to high reliability alternative materials

Strategic Concerns

- Restructuring from vertically integrated OEMs to multi-firm supply chains
 - Resulted in a disparity in R&D Needs vs. available resources
- Industry collaboration
 - Gain traction at University R&D centers, Industry consortia, "ad-hoc" cross-company R&D teams
- The mechanisms for cooperation throughout the supply chain must be strengthened.
 - Cooperation among OEMs, ODMs, EMS firms and component suppliers is needed to focus on the right technology and to find a way to deploy it in a timely manner
- Collaboration is iNEMl's Strength; We play an important role

iNEMI Actions in Environmental Area

The Environmental Leadership Steering Committee in place to set strategic direction

Bill Bader - iNEMI - Chair Alcatel-Lucent Marc Benowitz – BOD Member **Jackie Adams Todd Brady** (intel) **Mary Liz Burns Carol Handwerker** Joe Johnson 11 11 11 CISCO Nils Nissen Fraunhofer Scott O'Connell Tom Okrasinski Alcatel-Lucent **Patrice Rollet** INVENTEC **Tamim Sidiki** DSM **Joyce Taylor Rob Taylor** lenovo

iNEMI History & Actions in Environmental Area

- Roadmap of Environmental Conscious Electronics (since 1996)
- Established the Environmental Leadership Steering Committee to set strategic direction & priorities:
 - Issued iNEMI position papers on Product Carbon Foot printing and Definition of Low Halogen
 - Issued white paper on Timeline for Conversion of Notebook and desktops to HFR-Free and PVC free
 - Issued White Paper on Environmental Material Data Management & Reporting in Q4 2012
 - Issued White Paper on PVC Alternatives in Q4 2012
- Leading Projects on
 - Characterizing and improving Pb-free reliability since 2000
 - Characterizing PVC alternatives & HFR-free high reliability since 2009
 - Developing LCA tools for ICT products since 2010 Two active well-led teams
- Defining Environmental Research Priorities
 - Six environmental research proposals webinars held in 2012; 2 YTD in 2013
- Organizing workshops
 - Electronics Goes Green 2012

A Winning Example of Joint iNEMI Research Initiated

NSF Integrated Education and Research Traineeship Program IGERT: Global Traineeship in Sustainable Electronics

Purdue University and Tuskegee University in close collaboration with Global Electronics Industry - iNEMI plus 5 members - and International Academic Partners - Fraunhofer IZM - Berlin, Shanghai Jiao Tong University, Tsinghua University – Beijing, Indian Institute of Management – Udaipur, Universidad EAFIT – Medellin Columbia

Vision

Create a new integrative, collaborative model for graduate research and education needed to enable meaningful and measurable improvements in the global sustainability of electronics.

Funded by NSF in June 2012 \$3.2M for 28 two-year fellowships over 5 years External Advisory Board and opportunities for collaboration with industry, NGOs, research institutions

NSF Integrated Education and Research Traineeship Program IGERT: Global Traineeship in Sustainable Electronics

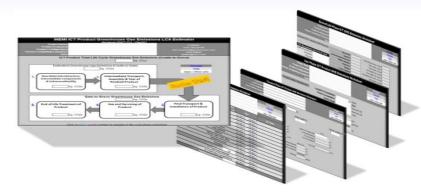
Three Research Thrusts

- 1. Polymers from Nature for Construction & Disassembly
 - Natural Nanocomposites for Structural Applications in Casings and Boards,
 - Bio-based Lignin and Soy-based Resins for Circuit Board Construction
 - Biomimetic Marine-Derived Bioadhesives for Device Construction & Disassembly
 - Green Replacements for Brominated Flame Retardants
- 2. Sustainable Product Design and Manufacturing
 - Novel LCA Approach for Electronic Products
 - Electronic Product Manufacturing Process Characterization and Improvement
 - LCA-based Design of Electronics
 - Recycling and Reuse of Electronic Devices
- 3. System and Supply Chain Issues
 - Integrating Sustainability Indicators across the Supply Chain
 - Corporate Sustainability Behavior Stakeholder Perception Corporate Valuation
 - Consumer Behavior
 - System-wide Effects of Laws and Regulations

INEM.

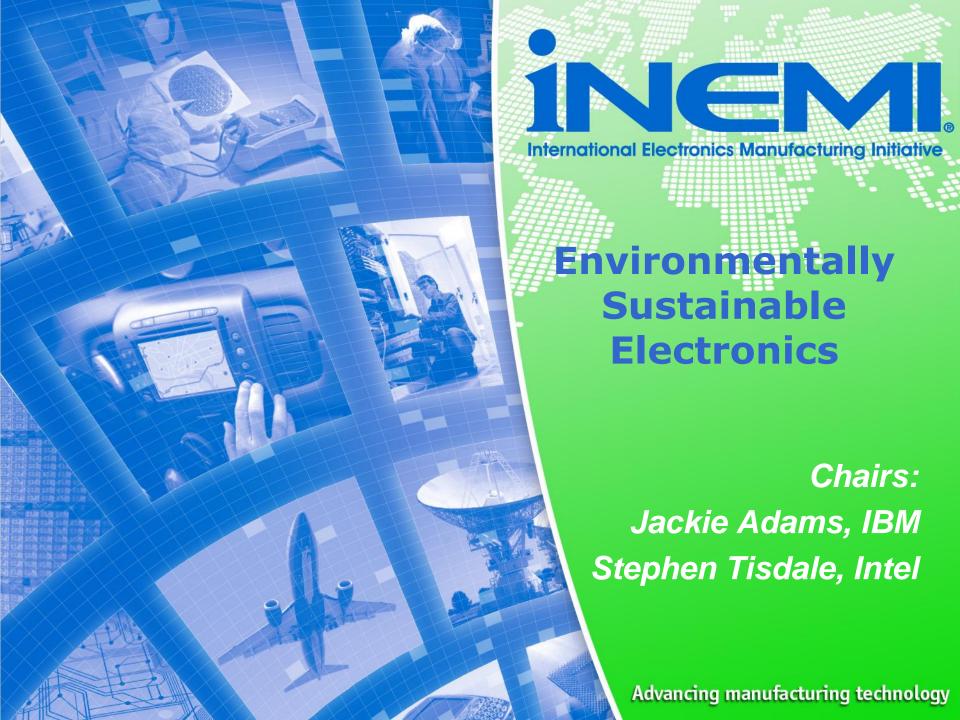
International Electronics Manufacturing Initiative

Learning & Result Examples of 2012 Completed Projects


Advancing manufacturing technology

HFR Free PCB Electrical and Material Performance & Supply Chain Readiness

- Eighteen company project of key laminators, OEM's, ODM's and Test Service providers
- Executed a comprehensive test suite on multiple materials from multiple suppliers, at multiple test facilities
- The test suite methodology developed enabled direct comparison of desired laminate properties
- Testing results are conclusive that the industry and the laminate providers are ready to make the transition to HFR Free materials for notebook and desktop applications
- Full spec sheets developed for usage at outgoing testing at laminate providers
 - Commitment received from all suppliers that outgoing laminate materials would be tested to conform with the iNEMI project team specifications
- Evaluation of industry capacity performed to ensure volume ramp readiness was in place.



ECO Impact Evaluator for ICT Equipment

- Simplified Building Block Tool Developed For Full Life Cycle Analysis of Product Carbon Footprint
 - Data bases assembled and tested
 - Algorithm's for calculating impact of individual components
 - Full Life Cycle tool set for complete ICT boards and systems
- Model was tested and verified by multiple iNEMI members on multiple products.
 - Within 5% accuracy of complex commercial tools
- Discussions underway to put in place a long term sustainable ownership model

ESE Table of Contents

Contents

1
4
10
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3

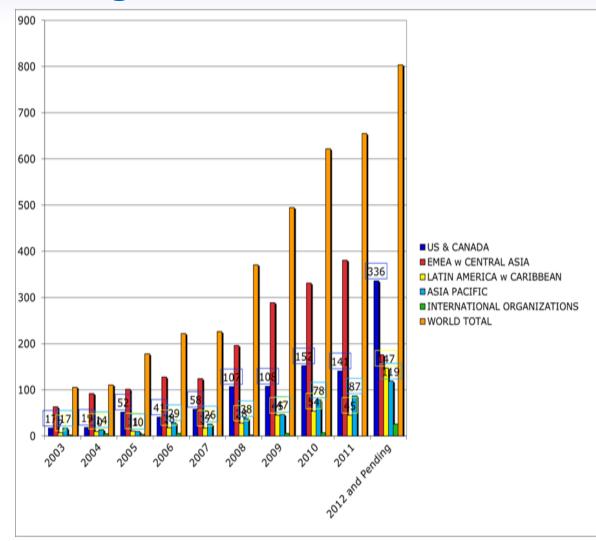
APPENDIX 1	40			
Eco Design (Subsection)	49			
Introduction	49			
Situation Analysis	49			
Critical Issues	<u>50</u>			
Technology and Business Needs	<u>50</u>			
Gaps and Showstopper	<u>51</u>			
Recommendations	<u>51</u>			
Energy (Subsection)	53			
Introduction	53			
Situation Analysis	57			
Critical Issues	61			
Technology and Business Needs	62			
Gaps and Showstoppers	68			
Recommendations	69			
Recycling (Subsection)	70			
Executive Summary	70			
Introduction	<u>70</u>			
Situation Analysis	70			
Market Drivers	74			
Business/Technical Issues	74			
Roadmap of Quantified Key Attribute Needs	75			
Critical Issues (Prioritized)	75			
Technology Needs	75			
Gaps and Showstoppers	76			
Recommendations	76			
Key Recommendations and Issues Raised in the Five Subsections 76				
Crosscutting Issues Affecting e-Waste and Energy	78			
Contributors	79			
Glossary	80			

Tahlas

Table 1: iNEMI Environmentally Sustainable Electronics: Roadmap and Vision

Figures

Figure 1: Global look at the exponential growth over time of Environmental regulations by country


Environmentally Conscious Electronics (ESE) Road Map Overview

- To produce environmentally conscious electronics the ESE TIG must continue to keep pace with:
 - Emerging <u>material restrictions</u>
 - End-of life requirements
 - Energy efficiency requirements
 - Holistic <u>design</u> requirements
 - Sustainable <u>business</u> practices
- To achieve these goals the ESE TIG has been divided into 5 groups:
 - Materials
 - Recycling
 - Energy
 - Design
 - Sustainability

What Has Changed Since 2011?

- Global environmental regulations and standards continue developing at a rapid pace, <u>particularly</u> <u>Energy & Waste</u>
- "Old" major regulations are being revised (EU RoHS, EU WEEE, etc)
- Emerging sustainability issues – conflict minerals, rare earth metals, etc
- Continued opportunities for industry to develop collaborative solutions to meet future needs and reduce costs/complexity

Environmentally Conscious Electronics (ESE) Road Map Overview

- Current Projects/Initiatives under or cross cutting to the ESE TIG
 - Projects
 - Pb-Free Rework Optimization
 - High-Reliability RoHS Task Force
 - Component and Board Finish Reliability*
 - Eco-Impact Evaluator Project
 - Rare Earth Metals

Initiatives

- Create a quantifiable set of metrics and potentially a tool for measuring a products true recyclability and reuse. Eco design for recycling/sustainability including toxicity assessment and critical usage/application.
- Develop a stakeholder aligned methodology/stepwise approach to develop and assess new or alternative materials.
- Identify and communicate/share best known practices for recycling, for metals recovery, and for resource efficiency at EOL processing.

ESE Summary

2013 Key Issues

- Growing issues that may impact other Technology Working Groups
 - Rare earth and conflict metals criticality
 - Reporting requirements on Conflict Minerals spelled out in Dodd-Frank Act
 - iNEMI team formed and defining critical actions/priorities on Rare Earth
 - Rapidly expanding list of restricted materials
 - Standards for carbon foot-printing/life cycle analysis data evolving
- Highlighted issues that are cross cutting in the Roadmap
 - Energy efficiency standards being defined
 - Transition to lead free and low halogen in previously exempt sectors
 - Additional restricted materials
 - Standards for product data management
 - Eco-design standards
 - Automotive growth in electronics per vehicle is rapid.

Summary

- ESE TIG is divided into 5 areas, including Sustainability
- New proposed 2013 ECE gaps identified to-date:
 - Develop methodology for evaluation of alternative materials, emphasis on polymers and plasticizers
 - Technical qualification of HFR-free high-end connectors
 - Commercialization/viability of post-consumer recycled plastics
 - Address emerging materials issues: nanomaterials, rare earth metals
 - Identify water quality/scarcity issues
 - Increase visibility of global product energy efficiency regulations/standards (developed global matrix)
- Full Technical Plan (Gaps 1-5 Years) and Research Priorities (Gaps 5-10 years) to be published in September
- We encourage iNEMI member and non member participation

Concluding Thoughts

- New global environmental requirements continue to multiply faster than industry can effectively respond
 - Opportunities to work alignment need to be captured and driven
- Industry needs to be more proactive in developing solutions that:
 - Are based on science and engineering, delivering value to customers
 - Are available in advance of new regulations
 - Can influence future regulations and stakeholder groups for more sustainable results
- Sustainability will be a major undertaking for industry as well as society
- Electronic solutions can help to empower people to live a more sustainable lifestyle
- iNEMI and its members are playing a significant role in preparing industry for these future needs

2013 Roadmap Pricing (available April 4, 2013)

Full roadmap \$3000*

(USB drive)

Single chapter \$ 500 (PDF download)

Special pricing for research institutes, universities, gov't agencies & non-profits

Full roadmap \$500*

Chapter \$ 100

^{* + \$100} shipping outside North America

Summary

- INEMI has a strong history of driving environmental improvements globally
- Excellent new projects and focus as we move forward in 2013

Get Involved!!

Thank You

Merci Gracias Grazie Danke Schon Effaristo Dank u Obrigado Go raibh Maith agat.....

www.inemi.org

Email contacts:

Bill Bader Bill.bader@inemi.org

Bob Pfahl bpfahl@inemi.org

Chuck Richardson
Chuck.richardson@inemi.org

