Smart Grid Distribution Prediction and Control Using Computational Intelligence

IEEE SusTech 2013

August 1, 2013

Shawn Chandler, PGE Smart Grid Architect **Joshua Hughes**, Predictive Learning Utility Systems

Complex Systems

Interconnected parts that as a whole exhibit behavior which is not obvious given the properties and behavior of the individual parts...

- Traffic systems
- Global economy
- Flocks of birds
- Ecosystems
- Social systems
- Internet
- Smart Grid

Source: princeton.edu

Smart Grid is a Complex System

Smart Grid resources:

- C&R Demand Response
- Distributed diesel generation
- Solar array
- Utility-scale energy storage
- Customer loads
- Auto-switching microgrid

System dynamics:

- Driven by complex interactions and feedback between many components with complex constraints
- Primary feedback is price

Portland General

Architecture Challenges

Complexity

- Need for smart grid systems to interact with human behavior, markets, regulation, environment
- Interactions between systems can have unintended effects
- Difficult prediction, optimization

Computability

- Emerging distributed grid resources require integration with each other
- Isolated program decision drivers, programs are not integrated within a comprehensive program, i.e. not "smart"
- Thousands if not millions of points of control

Implementation Elements: Distribution Grid Control System

5-15 minute data **Advanced Metering Infrastructure** Enables feeder load forecasting (AMI) Behavior verification Distributed Generation (≈5 MW) **Power System Enhancements,** Energy Storage (≈5MW) Telecommunications, · Feeder automated switching, **Distributed Control System** PLC data arrays w/MODBUS IEC-61968 & 61970 CIM Goals: Interoperability, PNWSGD TIS/TFS: regional price signal **Standards** Data integration, SCADA bridge technology **Optimize** Commercial and residential DR dispatch **Utility** VER following, shaping (wind, solar) **Programs** Micro-grid and enhanced reliability Least "cost" Smart Grid Distribution Prediction and Control Meet or 00 Using Computational Intelligence exceed load

System Architecture - SoA

Building the System

- Much time spent analyzing the Hourly Feeder data for the micro-grid
 - Similar analysis for weeks, seasons, years
- Overall trend for peaks during daytime, dominated by industrial and commercial customer loads
- Outlier peaks in the afternoon

Building the System

- Seasonal trends but with lots of volatility
- Temperature and humidity trends
- Most obvious: temperature is a traditional predictor of demand, but how predictive is it?
- How predictive are other weather variables?

Do relationships exist between sets of variables?

Discrete Multivariate Modeling

- Systems approach for identifying the set of all possible relations between the variables
 - OCCAM (analysis tool, see http://dmm.sysc.pdx.edu/)
 - Heuristic search (through all the possible relations)
 - Useful for prediction
 - Discovering patterns
 - Determines the strength of relations between/among variables
 - Predictive variables are then used to train the neural network for the Load Forecaster

Individual variables in order of predictive power for demand:

- previous demand
- hour of day
- day of week
- temperature now
- temperature forecast
- humidity forecast
- visibility/cloud cover
- precipitation

OCCAM: special thanks to Dr. Martin Zwick, PSU

A Learning System

- The Load Forecaster learns from a representative set of realworld data
 - Train until load forecasts (output O') are within 2-5% of historical demand
 - Accomplished by adjusting the parameters of the model: weights on the connections between its elements/nodes
 - Weights can be adjusted using a variety of algorithms
- Once in operation, the Load Forecaster may adjust itself using feedback
 - Based on performance, the difference between O and O'

System Processing – What Does it Do?

Prediction and Smart Grid Asset Dispatch

- Load Forecasting Module predicts microgrid load over next 72 hours
 - Uses local and regional weather and environment data, historical load, and current microgrid configuration
- Dispatch Optimization Module predicts optimal dispatch, i.e. schedules
 - Uses microgrid conditions, e.g. state information, meter data
 - Resource availability, state information, resource pricing
 - Program and resource constraints, regulatory and operational
 - Regional price
- Dispatch (on/off) occurs every 5-minutes given an imminent schedule

System Operations – Data Collection

System Input: Price

HE1: 5 minute data

HE2-6: 15 minute data

HE7-24: 1 hour data

HE25-48: 6 hour data

HE48-96: 24 hour data

System receives price information:

72 hours into the future, every 5 minutes

System Operations – Simulation & Dispatch

Simulator Manager Detail

- Initiates a new simulation cycle when a new price signal is received
 - Inputs: time (t), weather (W_t), and past loads (L_t), current schedules (u_t) and constraints (K_t)
 - Receives a 3-4 day load forecast, 5 minute period granularity
 - Experimental lower limit to processing time approx. 5 seconds

Load Forecaster Detail

- Load forecaster *learns* to model a specific microgrid
 - Multiple contexts
 - Grid configurations (autoswitches)
 - Environmental conditions
- Load forecaster is updated with the latest data available from the controller just before the dispatch decision
- Accuracy 2-5% error within the first 6 hours

Dispatch Optimization

- Uses 24-hour-ahead load forecast and opportunities based on price signals (i.e., the price to dispatch asset is less than price of energy from the grid)
- Assets must meet every system constraint, taking into account asset state and availability from the SCADA system

 PLC Integration with the system is achieved via a SQL-PLC register bridge, updated "instantly" as the PLC receives information from the field

Dispatch Optimization

- Evaluates available candidate blocks of time to determine the "optimal" schedule for the next 24 hours
- "Optimal" is defined in terms of cost
 - An optimal schedule will minimize the "cost-to-go" for a sequence of dispatch decisions, i.e., a dispatching schedule
 - Cost defined in terms of price of dispatch, usage costs, possible future missed opportunities (due to exhausting uses by dispatching indiscriminately)
 - Key for optimization over the long term is to account for the future costs of sequences of short-term decisions

Dispatch Detail

High-Level System Benefits

Economic

- Energy
 - Load shifting
 - Peak shaving
 - Variable Energy Resource following
- Use cases
 - Optimal generation dispatch
 - Avoided Cost from arbitrage
 - Enhanced economic development

Reliability

- Energy
 - Higher power quality
 - Improved load forecasting
- Use cases
 - System reliability
 - Load following
 - Micro-grid balancing

Social

- Energy
 - Enhanced reliability
 - Improved customer choice
 - Improved energy independence
- Use cases
 - Enhanced economic development

Special Thanks

US Department of Energy

 Funding for the opportunity to complete this research within the Pacific Northwest Smart Grid Demonstration Project

Pacific Northwest National Lab

- Don Hammerstrom Principal Investigator
- Ron Melton Project Director

Questions?

Shawn Chandler, Smart Grid Architect
Portland General Electric
Shawn.chandler@pgn.com

Joshua Hughes, Chief Systems Engineer
Predictive Learning Utility Systems
Systems Science PhD Program, Portland State University
hughesj@pluspdx.com

