A MOTOR-GENERATOR AND SUPERCAPACITOR BASED SYSTEM FOR MICRO-GRID FREQUENCY STABILIZATION

Rick Crispo and Ted Brekken Arne Bostrom, Annette von Jouanne, Alex Yokochi

Oregon State University

Project Objective

- This project presents a combined inertia and supercapacitor-based energy storage system for stabilizing microgrids.
- Microgrids generally have low inertia, and in the case of high-penetration of renewable power sources, light droop characteristic.
- The proposed energy storage system adds both via real inertia, and line frequency dependent operation of a supercapacitor energy storage bank.

Background

- Grids typically are stabilized with control operation at four timescales: inertial, primary, secondary, and tertiary.
- Inertia energy storage acts instantaneously.
 - $E = 0.5 \text{ J W}^2$
 - P = dE/dt = J w dw/dt
- Primary control response quickly (a few seconds or less) arrests frequency deviations
 - $P = k^*(f 60 Hz)$
- Both functions are provided by large, dispatchable synchronous generation (e.g., hydro, coal, etc...)
- Non-dispatchable generation (e.g., wind, solar, etc...) typically provide little to non of inertia or primary control.
- From Power System Stability and Control by Kundur, typical thermal generation moment of inertia constants are 2 to 10 seconds

Microgrid Add stabilizing energy storage to arrest and correct frequency deviations

System Overview DC/AC conversion, inertia, energy storage

Wallace Energy Systems and Renewables Facility (WESRF)

Motor Generator Set for Inertia

- $J = 4.29 \text{ kg-m}^2$
- H = 1.69 seconds

Supercapacitors

- 30 kW
- 90 seconds

Primary Frequency Response If grid frequency > 60 Hz, sink power If grid frequency < 60 Hz, source power

Inertial Response

Inertia power responds immediately to frequency deviation, before primary response

Conclusion

- A energy storage system for providing inertia, primary frequency response, and voltage conversion for microgrid applications has been presented.
- Inertial response is important and responds before primary control.
- Future work: expand to a doubly-fed based motorgenerator set to utilize a broader speed range and more inertial storage.

