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What is a microgrid? 

Microgrid: section of the power grid that can disconnect and operate independently 

• Often a neighborhood, university campus, military base, industrial campus, 

single building, or distribution feeder 

• Must contain internal energy sources 

• Typically contains energy storage: during a grid fault, inverter-based storage 

can pick up load fast enough to prevent an outage 

• Primary benefit is reliability 

• Secondary benefits:  

• Single entity from power system operator’s perspective, potentially 

simplifying integration of distributed/renewable energy 

• Internal sources and storage can be operated for economic benefit 
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How to maximize economic benefit when grid-tied 

Many microgrids are grid-tied >99% of the time 

Problem:  How to optimize economics of microgrid operation? 

Given a microgrid with:  

• Dispatchable generators 

• Battery 

• Demand response resources 

• Photovoltaic 

• Loads 

• Dynamic electricity prices 

Goal: meet load demand at lowest marginal cost 

When should each resource be turned on (and at what power)? 
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Assumptions 

Several predictions are available hours or days in advance (e.g. 72 hours): 

• Predicted load profile 

• Predicted PV output  

• Predicted cost of grid electricity 

 

 
PPV 

Pload 

Pdem 

Pdem = Pload - _PPV 
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Possible solutions 
Simple-minded approach:  

• Divide 72-hour window into multiple intervals 

• Assign cost to each resource during each interval 

• Choose the cheapest resources to meet the load 

• Doesn’t account for battery SOC  

• Stored energy is a time-coupling mechanism 

Linear programming (LP) can account for SOC limits 

• Optimizes all intervals simultaneously 

• Well-tested, has known convergence properties, fast 

• Can’t account for: 

• Battery conversion losses 

• Discrete generator power setpoints 

• Resource run-time constraints (e.g. maximum daily runtime) 

Mixed-integer linear programming can account for SOC limits, losses,  power discretization, 

run-time constraints 

• Much slower (NP-hard) 

Other approaches (genetic algorithm, particle swarm, etc) 

• Global minimum generally not guaranteed, long computation times 
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Linear Programming 

Our chosen solution uses linear programming (fast, reliable) 

Why is computation speed important in emerging smart grid applications? 

• Time interval lengths under consideration decreasing, vastly increasing the 

number of variables in a given time window 

• Frequency of optimization is increasing.  Pacific NW Smart Grid Demo 

Project nodes re-optimize every five minutes 

• Emerging control methods (e.g. transactive control) optimize iteratively 

How we adapt LP: 

• Auxiliary variables trick LP into accounting for battery losses 

• LP solution post-processed to account for discrete constraints 
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Basic LP setup 

• n future time intervals under optimization:  i = {i1, i2, …, in} 

• Interval lengths: {∆t1, ∆t2, …, ∆tn}    (e.g. {5, 5, …, 15, …,  180) [minutes] 

• Working variables: grid power Pg,i, dispatchable generator power Pd,i, storage power 

Ps,i, demand response power PDR,i 

• Sources of same type and cost aggregated into single variable 

• Cost of power from each source during each interval: cg,i, cd,i, cs,i, cDR,I 

• Objective function:  

 

 

• Subject to:  
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“Minimize cost of power” 
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“Generation meets demand” 
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Inequality constraints 

• Power limits of sources provide inequality constraints: 

𝑃𝑟, 𝑚𝑖𝑛 ≤ 𝑃𝑟, 𝑖
≤ 𝑃𝑟

, 𝑚𝑎𝑥  ∀ 𝑖, 𝑟  

 

• Typically Pd,min and PDR,min are 0 

• Pg,min = 0 if power exportation not allowed 

• Energy stored, E, has minimum Emin, maximum Emax, and initial value E0, leading to 

constraints: 

𝐸𝑚𝑖𝑛 ≤ 𝐸0 +  𝑃𝑠, 𝑖𝑥
∆𝑡𝑖𝑥 ≤ 𝐸𝑚𝑎𝑥  ∀𝑖

𝑖

𝑖
𝑥
=1

 

 

• This assumes 100% efficiency for energy entering and leaving storage 

• For a microgrid where storage may be cycled daily, this is a bad assumption 

 

“Stay within SOC limits” 

“Stay within resource power limits” 
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Conversion loss accounting 

• Storage conversion losses are nonlinear: 

 

 

• But they are approximately piecewise linear 

• Define auxiliary variables: 

• Power leaving storage (before losses) 

• 𝑃𝑠𝑜𝑢𝑡, 𝑖
=  

0,     𝑥 < 0

 
𝑃
𝑠
,
𝑖

𝜂
𝑜𝑢𝑡

, 𝑥 ≥ 0 

• Power entering storage (after losses) 

• 𝑃𝑠𝑖𝑛, 𝑖
=  

−𝑃𝑠
, 𝑖 
𝜂𝑖𝑛,     𝑥 < 0

 0,                  𝑥 ≥ 0
 

• Psout and Psin can be used to directly find the energy stored: 𝐸𝑖 = 𝐸0 +  (𝑃𝑠𝑜𝑢𝑡, 𝑖 + 𝑃𝑠𝑖𝑛, 𝑖)
𝑖
𝑖
𝑥
=1  

Ps 

Ploss 
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Auxiliary constraints 

• The auxiliary variables require auxiliary constraints to link them to existing variables: 

𝑃𝑠𝑜𝑢𝑡, 𝑖
≥ 0  ∀𝑖   and   𝑃𝑠𝑖𝑛, 𝑖 ≥ 0   ∀𝑖 

 

 

𝑃𝑠, 𝑖
= 𝑃𝑠𝑜𝑢𝑡, 𝑖 𝜂𝑜𝑢𝑡 −

𝑃𝑠𝑖𝑛, 𝑖

𝑛𝑖𝑛

   ∀𝑖 

 

• New, more accurate energy storage inequality constraints: 

𝐸𝑚𝑖𝑛 ≤ 𝐸0 +  𝑃𝑠𝑖𝑛, 𝑖𝑥
− 𝑃𝑠𝑜𝑢𝑡, 𝑖𝑥 ∆𝑡𝑖

𝑥
≥ 𝐸𝑚𝑎𝑥   ∀𝑖

𝑖

𝑖
𝑥
=1

 

 

 

• Note:  These equations rely on Psin and Psout never being simultaneously nonzero 

• This is a binary constraint and can’t be expressed in LP 

“Psout and Psin are always positive or zero” 

“Storage power is linked to Psout and Psin” 

“SOC stays within limits” 
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Modified objective function 

• Need to ensure Psout and Psin are never simultaneously nonzero 

• Modify objective function to apply small costs csout and csin to Psout, Psin 

 

 

 

 

 

 

 

 

 

“Minimize cost of power, plus small cost to avoid solutions 

where storage is simultaneously charged and discharged” 
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Post-processing 

• Dispatchable microgrid resources may have nonlinear constraints such as 

• Minimum turn-on notice 

• Maximum run-time during a period (e.g. day, year) 

• Minimum off-time before turn-on, minimum on-time before turn-off 

• Discrete power setpoints 

• The constraints are applied using a series of hueristic post-processing steps, briefly 

summarized here: 

1. Round LP solution to achieve discrete power setpoints 

2. Dis-aggregate any aggregated resources 

3. Address minimum on-time and minimum off-time constraints 

4. Address maximum run-time constraints 

5. Adjust storage power to meet load, if needed 

6. Adjust grid power to meet load, if needed 

• Result remains very close to LP solution, but is no longer guaranteed optimal 
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Simulated microgrid 

Simulated using data from a Portland General Electric microgrid 

• Medium voltage utility feeder “high reliability zone” (HRZ) 

• Part of Pacific Northwest Smart Grid Demonstration Project 

• 72-hour look-ahead window 

• 122 time intervals: Δti  varies from 

5 mins (at beginning) to 3 hrs (at 

end of window) 

• Pload  is measured microgrid feeder 

load for July 5-7, 2011; varies 

between 1.5 MW and 3.5 MW;  

• cgrid  is actual MIDC hourly price 

for July 5-7, 2011; varies between   

-2 $/MWh and 522 $/MWh 
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Simulated microgrid 

120kW PV 

1.25MWh, 5MW 

2x 1.275MW Gen 

120kW DR 

Model of PGE microgrid developed in microgrid modeling platform 

 

 

 

2x 800kW Gen 

2x 800kW Gen 

Control 

algorithms 
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Results 

75%  SOC 

error when 

neglecting 

losses 
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Results 

• Total cost to meet load over 72 hours: $7,027 

• Penalty due to meeting nonlinear constraints: $50 (0.7%, varies)  

• Cost if using only grid and PV power: $9,675. 

• Resource optimization results in 27% savings  

• >50% if bulk power exportation allowed 

• Largely due to price spike 

• Processing time: 2 to 4 seconds on 2 GHz PC in script-based Matlab   
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Results 

• A more typical 3-day period 

• 5% savings over grid+PV alone 

• Because only battery, grid, and PV are used, this solution is true optimum (no hueristics) 

• Battery cycles 4 times in 3 days, but does not respond to all local cost minima 
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Neglecting storage losses 

• Excessive battery cycling (at all local minima) 

• Uneconomical, even neglecting the excessive storage degradation 
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Thanks for listening! 

• Questions? 
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Modified LP approach 

Pre-processing Post-processing 

LP core 

constrained 

optimization 

Pr,i P*r,i 
cr,i 

SOC 

Load, PV 

forecast 

Previous 

P*r,i  

Pricing 

signal 

24-hour minimum 

turn-on notice: 

may exclude DR’s 

from optimization 

Can be 

overridden by an 

emergency flag 

Various nonlinear or timing 

constraints 

• Generators can run only at 

nominal power, or at discrete 

fixed power levels  

• Maximum daily and annual 

generator runtimes 

• Minimum generator off-time 

before turn-on  
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Microgrid simulation tool 
 Simulation platform to support investigations of architectural, control and optimization 

techniques in microgrids 

 “Building” block is fundamental unit; configure by combining common resources 

 “Control & Weather” block contains algorithms for microgrid-level control 

 Matlab/Simulink/SimPower; phasor domain (1 & 3) 

 

 Modeling and simulation of microgrids using MATLAB/Simulink + SimPowerSystems 

 “Building” block is the fundamental unit; may be configured with a combination of many 

common resources (including, battery, generator, PV array, home appliances, etc.) 

 “Control & Weather” block contains algorithms for microgrid-level control and globally 

loaded data for weather, electricity price, etc. 

 “Smart Breaker” detects and opens in the case of grid faults; resynchronizes and closes when 

grid is restored 

 Single-phase and phasor domain for simplicity 

 

 

 

 

 

 

 

 Example microgrid configured in simulation platform 
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