An Advanced Study of the Wind Power Variability on the Federal Columbia River Power System (FCRPS)

Janhavi Kulkarni
Oregon State University
Overview

• Introduction
• Background
• Study of the Wind Power Variation
• Correlation Coefficient Analysis
• Regression Analysis
• Conclusion
Introduction

• Wind Power is highly non-dispatchable.

• Other resources critical to compensate for wind power generation.

• Suitable Balancing Reserves —
 -- Hydro Power
 -- Thermal Power
 -- Interchange Power

http://www.nwcouncil.org/energy/powersupply
Wind Power

WIND GENERATION CAPACITY IN THE BPA BALANCING AUTHORITY AREA

Based on 5-min readings from the BPA SCADA system for points 70687, 103249, 114476
Balancing Authority Wind Generation in Green, Wind Basepoint in Red, Oversupply Mitigation (value equaling how much we are reducing the wind generation in our BA) in Blue
Click chart for installed capacity info
BPA Technical Operations (TOT-OpInfo@bpa.gov)
Federal Columbia River Power System

- 31 Dams built over Columbia River and its tributaries.
- Owned and operated by –
 - US Army Corps of Engineers
 - Bureau of Reclamation
- Balancing Authority – Bonneville Power Administration.

Comparison of Generation and Load
Study of the Wind Power Variation

• Analysis important to determine impact of wind power variation on the remaining power system.

• Statistical methods used for analysis-
 -- Correlation Coefficient Analysis
 -- Regression Analysis

• Analysis performed on data obtained from SCADA measurements from 2007 to 2013 at an interval of every 5 minutes
Correlation Coefficient Analysis

• Correlation Coefficient Analysis to determine the strength of a relationship.

• Correlation Coefficient calculated by –

$$R = \frac{S_{xy}}{S_x S_y}$$

• Calculated for 30 days with a sliding window of one day.
Changes in Wind Power vs. Changes in Hydro, Interchange & Thermal Power
Regression Analysis

• Regression Analysis creates a mathematical model to determine relationship between two variables.

• Regression Analysis calculated by –
 \[Y = \beta_1 x + \beta_0 \]
Regression Analysis and R^2

- To determine the effect of wind power on the hydro, thermal and interchange power -
 \[
 \Delta P_{\text{hydro}} = \beta_1 \Delta P_{\text{wind}} + \beta_0 \\
 \Delta P_{\text{thermal}} = \beta_1 \Delta P_{\text{wind}} + \beta_0 \\
 \Delta P_{\text{interchange}} = \beta_1 \Delta P_{\text{wind}} + \beta_0
 \]

- R^2 to determine how well the line fits the data.
‘R squared’ - Goodness of the fit

Delta Wind Power vs Delta Hydropower

Delta Wind Power vs Delta Interchange Power

Delta Wind Power vs Delta Thermal Power
Data Density
Values of Beta for Changes in Wind Power vs. Changes in Hydro, Interchange & Thermal Power
Values of Beta for Wind Penetration
Conclusion

• Saturation of hydro power as a source of balancing reserve for wind power.

• Slight increase in the use of thermal power to balance wind.

• Use of AC interchanges to export variability has greatly increased.

• Changes in the dynamics of power system with the addition of wind power capacity.
Thank You.