

Optimally Structured Retail Rates to Incentivize Demand Response

Ahlmahz Negash, Daniel Kirschen 7-25-2014

2014 IEEE Technologies for Sustainability Conference (SusTech)

UNIVERSITY of WASHINGTON

Research Directions

UNIVERSITY of WASHINGTON

UNIVERSITY of WASHINGTON

Goal

Current Dynamic Pricing

• Time of Use (TOU)

- Based on time of day/season
- Real Time Pricing (RTP)
 - Based on wholesale market

Proposed Dynamic Pricing

- Modified Real Time Price
 - Based on:
 - Wholesale conditions
 - Local grid conditions
 - Customer selected price risk

UNIVERSITY of WASHINGTON

MODIFIED REAL TIME PRICE

CAISO Wholesale Grid State Indicator, Gm

- Locational index to indicate market conditions
- Adjusted by DSO or ESP for local, smart devices
- Used to facilitate consumer energy use decisions

Formulation

$$G_n^t = a^{\frac{P_{actual}^t}{P_{rated}^t}} \tag{1}$$

$$a = e^{\frac{\ln(G_{max})}{r}} \tag{2}$$

$$G = G_{max}(1 - r^{-(G_m + G_n)})$$
(3)

$$mRTP = B * G + R_{min} \tag{4}$$

$$B = \frac{R_{max} - R_{min}}{G_{max}} \tag{5}$$

$$\min_{R_{min}} \left| \sum_{t=1}^{8760} (B * G^t + R_{min}) * Load^t - RR \right|$$
(6)

Gn=network grid state index Gm=CAISO grid state index r=pu emergency capacity Rmin=optimized parameter B=customer chosen risk level mRTP=retail rate

7

UNIVERSITY of WASHINGTON

CASE STUDY

- Assumptions:
- 1) Regulated utility
- 2) One year rate case
- 3) Single class of customers (residential)

Figure 1. IEEE 123-Bus Test Feeder. Feeder section highlighted in red are near capacity and benefit from load reductions during local peak usage.

Revenue Requirements

Expenses

Operational Expenses

	Energy	\$ 330.00
	Distribution	\$ 70.00
	Customer Accounting	\$ 30.00
	Administration	\$ 63.00
	Rate Discounts	\$ 7.00
Debt Service		
	Debt Service (DS)	\$ 175.00
Capital Projects		
	Total Capital Expense	\$ 237.00
Revenue		
Wholesale		
	Wholesale Sales	\$ 100.00
Retail		
	Retail Revenue Requirements	\$ 752.60
Rate:		
Total Load (MWH)		9,200,000
Average rate (\$/MWH)		81.8

10

Price and Load Data

UNIVERSITY of WASHINGTON

RESULTS

Figure 2. Comparison of proposed mRTP, RTP, TOU and flat rates. (Day 1 is a Saturday and the TOU rate used is flat during weekends.)

Figure 3. Comparison of proposed rate, RTP, TOU and flat rates. (Summer weekday)

Results: (Un)Correlated Gn & Gm

Conclusion

- Modified Real Time Price
 - Hybrid between TOU and RTP
 - More price security than RTP
 - More accurately reflects true costs than TOU
 - Allows for customer choice
 - Reflects local value of demand response

Thank you

UNIVERSITY of WASHINGTON