Vermont Energy Investment Corporation

- Nonprofit with 25 years experience reducing economic, environmental costs of energy
- Comprehensive focus and results
 - Energy efficiency Renewable energy Transportation
- National & international consulting & implementation
 - Program design, planning, & evaluation policy & advocacy research
- Clients are government agencies, regulators, utilities, foundations, advocates
- Operate 3 Energy Efficiency Utilities

Forecasting Demand of Public Electric Vehicle Charging Infrastructure

National EV Registrations

How much demand will there be for public charging?

Where should charging stations be located?

Optimizing EVSE deployment

Charging Equipment

Level 1 charging 120V

Level 2 charging 208/240V

DC fast charging 480V

Methodology to predict demand for public EVSE

Vermont case study

Projected EV sales

Travel patterns

Spatial data of non-residential locations

EIA Projected EV Registrations

Daily Travel Demand

EV drivers
go ~ 25
miles
between
charges

Vermonters drive 33 miles / day

Vermonters
need an
extra 8
miles / day

With a Level 2 charger ≈ 1.5 hours of charging per vehicle

Between 8 AM and 5 PM, each EVSE can serve 5.8 vehicles

Estimating Demand

Demand for public EVSE is a function of :

- EV range and efficiency (70-80 miles)
- 2. Distance EV drivers are comfortable driving between charges (25 mi)
- 3. Local travel patterns (33 mi driving per day in Vermont)

Vermonters will need 0.04 public charging stations per EV

Priority non-residential locations

Long dwell times

n = 40

High density of employment

Projected EVSE needed in Vermont

Year	Projected # EVs	Cumulative # EVSE needed	Incremental cost
			estimate
			(midrange)
2013	50	2	\$32,000
2014	281	11	\$180,000
2015	571	23	\$365,000
2016	885	35	\$567,000
2017	1,386	55	\$887,000
2018	1,980	79	\$1,267,000
2019	2,520	101	\$1,613,000
2020	3,216	129	\$2,058,000
2021	3,972	159	\$2,541,000
2022	4,798	192	\$3,070,000
2023	5,649	226	\$3,615,000

Adequate public EVSE at present but not full geographic coverage

EVSE Siting Considerations

- Availability of power
- Parking capacity
- Proximity to high traffic corridor, destinations
- Link with other modes (transit, Park and Rides)
- Filling gaps in EVSE spatial coverage

Funding Public EVSE

Annual funds needed will be substantial (\$32,000 to \$3 million+)

- 1. Fee for use
- 2. Advertising revenue generation
- 3. Pairing EVSE with solar photovoltaic
- 4. Sale of renewable fuel credits (RINs)

Thank You **Justine Sears** jsears@veic.org

