IEEE SusTech 2014

Power System Data Management and Analysis using Synchrophasor Data

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand

July 25, 2014

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

2 Methodology

3 Results

Introduction

- Electricity and society. Grid as aged well still operates daily and paces demand.
- Grid has experienced:
 - Renewables
 - Load congestion, demand for quality electric power
 - Threats to cyber security / physical infrastructure
- National Energy Technology Laboratory (NETL) identifies key technological areas. Applicable areas:
 - improved and accurate sensing and measurement capability
 - advanced control methods
 - decision support

Synchrophasor Fundamentals Project Fundamentals Correlation Fundamentals

Synchrophasor Fundamentals

- Synchrophasor \equiv Phasor Measurement Unit (PMU)
- Power system sensors for tracking voltage, current, frequency.
- Values recorded in phasor format: magnitude and angle.
- High fidelity (60Hz) vs SCADA (pprox 5 sec.)
- Synchronized Data via Global Positioning System (GPS) timestamps.
- Phasor Data Concentrator (PDC) single data logging point containing multiplexed PMU data steam.

- 4 同 6 4 日 6 4 日 6

Synchrophasor Fundamentals Project Fundamentals Correlation Fundamentals

Project Fundamentals

- BPA provides dataset
 - 950 GB of positive sequence voltage data.
 - Span: August 2012 August 2013
 - 20 PMUs: various locations inside BPA balancing authority.
- Our Goal:
 - Develop multidisciplinary methodology to handle high cardinality data.
 - 2 Begin identifying data vs. power system issues.
 - Onstruct a fast, reliable database for handling big data issues.

• E • • E •

Synchrophasor Fundamentals Project Fundamentals Correlation Fundamentals

Pearson Correlation

- Pearson Correlation determines how well data is linearly correlated.
- Given two independent input sets of data X and Y of length N, the Pearson correlation yields a correlation coefficient r between -1 and 1 based on the following equation:

$$r = \frac{\Sigma(XY) - \frac{\Sigma X \Sigma Y}{N}}{\sqrt{(\Sigma(X^2) - \frac{(\Sigma X)^2}{N}) \times (\Sigma(Y^2) - \frac{(\Sigma Y)^2}{N})}}$$

PDC Engine Data Structure Correlation Algorithm Window Sizes

Phasor Data Concentrator (PDC) Engine

- Phasor Data Concentrator (PDC) Engine
 - Data files 1-5 minutes in length
 - Understanding the data:
 - File framework
 - Recorded power system attributes
 - Data discretization rate
 - Topological layout of the PMUs
 - Historical data playback

PDC Engine Data Structure Correlation Algorithm Window Sizes

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand

IEEE SusTech 2014

8/27

PDC Engine Data Structure Correlation Algorithm Window Sizes

Data Structure

PDC Engine Data Structure Correlation Algorithm Window Sizes

Correlation Algorithm

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

10/27

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

PDC Engine Data Structure Correlation Algorithm Window Sizes

Window Size Application

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

11/27

Event Classification Visualization Data Inconsistency Case Study - Monrovia Event Demonstration

Data & Power System Event Identification

Data Event	Expected Identifier/Description
Data Drop	V^\dagger and/or ϕ^* data $=$ 0
PMU Misread / Communication Error	Identical repeated values
Loss of GPS Synchronization	ϕ drift, PMU units not synced
Power System Event	Expected Identifier/Description
Power Flow Contingency	Change in $\frac{d\phi}{dt}$
Generator/Load Trip	Change in voltage and/or $\frac{d\phi}{dt}$
Transmission Line Trip	Change in V and/or change in ϕ
Power Transformer Tap Change	Change in V
Miscalibration of Transformer	Pending further investigation
Capacitor/Reactor Switching	Change in V and ϕ
Inter & Intra Zone Oscillations	Slow-coherent change in V or ϕ

 $\dagger~V=$ Positive sequence bus voltage magnitude

* ϕ = Positive sequence bus phase angle

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand

12/27

イロト イヨト イヨト イヨト

200

Event Classification Visualization Data Inconsistency Case Study - Monrovia Even Demonstration

Clean Dataset

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand

IEEE SusTech 2014

13/27

Event Classification Visualization Data Inconsistency Case Study - Monrovia Event Demonstration

Lightning Event Dataset

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand

IEEE SusTech 2014

14/27

Event Classification Visualization Data Inconsistency Case Study - Monrovia Event Demonstration

Data Dropout

15/27

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Event Classification Visualization Data Inconsistency Case Study - Monrovia Event Demonstration

Data Misread

Voltage [V p.u.]

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Event Classification Visualization Data Inconsistency Case Study - Monrovia Event Demonstration

Prior to Event

() < </p>

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

17/27

 Background
 Event Classification

 Methodology
 Visualization

 Results
 Data Inconsistency

 Future Work
 Case Study - Monrovia Event

 Conclusion
 Demonstration

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

18/27

Э

・ロト ・回ト ・ヨト ・ヨト

Event Classification Visualization Data Inconsistency Case Study - Monrovia Event Demonstration

Lightning Event - Window Size: 600 entries

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

19/27

æ

★ 문 ► ★ 문 ►

Image: A matrix

Event Classification Visualization Data Inconsistency Case Study - Monrovia Event Demonstration

Lightning Event - Window Size: 6 entries

< 🗇 🕨

Event Classification Visualization Data Inconsistency Case Study - Monrovia Event Demonstration

Correlation Algorithm Demo

Demo Page

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

21/27

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

End Goal and Motivation Correlation Noise Qualification Improved Pattern Recognition Coupling of Correlation Algorithm & Bitmap Index

End Goal and Motivation

- Real-time PMU data analysis machine.
- Automated contingency signature detection.
- Facilitate grid operator ease-of-use.
 - Appealing GUI and visualization methodology.
 - Fast and efficient database back end.
 - Integration of historical event querying.

End Goal and Motivation Correlation Noise Qualification Improved Pattern Recognition Coupling of Correlation Algorithm & Bitmap Index

Correlation Noise Qualification

GOAL: Quantify PMU correlation noise levels across varying window lengths.

PURPOSE: Further develop specific event identification.

PROPOSED METHOD: Statistical analysis of stochasticity in clean PMU data streams over various time durations.

End Goal and Motivation Correlation Noise Qualification Improved Pattern Recognition Coupling of Correlation Algorithm & Bitmap Index

Improved Pattern Recognition

GOAL: Optimize accuracy, timing, and amount of information output.

PURPOSE: Provide operators with most accurate, efficient, and ample amount of information gathered from the installed PMU sensor network.

PROPOSED METHOD: Implement improved correlation, regression, classification, or machine learning algorithms.

A B K A B K

End Goal and Motivation Correlation Noise Qualification Improved Pattern Recognition Coupling of Correlation Algorithm & Bitmap Index

Coupling of Correlation Algorithm & Bitmap Index

GOAL: Merging correlation algorithm with the bitmap index **PURPOSE:** Ability to query correlation values **PROPOSED METHOD:** Store correlation values in bitmap index

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

(4) (3) (4) (3) (4)

- Recommendations
 - Consistent Formatting of Data
 - Computational Needs
- What we have accomplished
 - Visual tool to identify events
 - Quickly retrieve elements from the database
 - Identify new research directions

THANK YOU

QUESTIONS?

Jordan Landford, Rich Meier, Ben McCamish, Miles Histand IEEE SusTech 2014

27/27

æ

(★ 문) (★ 문)