Optimal Aerodynamic Energy Capture Strategies for Hydrostatic Transmission Wind Turbine

Danop Rajabhandharaks

Ping Hsu

July 25, 2014

Background

Shortcomings for Conventional Wind Turbine:

- 1. Gearbox (step up) reliability issue (failed every 5 years).
- 2. Weight of gearbox and generator in the nacelle increases production, transportation, installation, and maintenance costs. If the weight can be lowered, the costs can be decreased.

Background

Nacelle

Objective

- The objective of this study is to develop a control strategy to maximize aerodynamic energy capture for the hydrostatic transmission wind turbine taking into account the hydraulic motor and generator on the ground level.
 - A single turbine
 - A double turbine

P_{wind}: Raw power from wind P_{rotor}: Power available at rotor $\tau_{\text{rotor}}\text{:}$ Torque asserted at rotor C_n: Power coefficient U: Wind speed A: Swept area R: Blade radius ρ_{air} :Air density λ: Tip-speed ratio ω_r :Rotor speed J_r: Rotor inertia V_D: Pump displacement ΔP_p : Differential pressure at pump $\eta_{\text{mech,p}}$: Pump mechanical efficiency β:pitch angle

 Δp_x : Differential pressure at pipe center Δp_p : Differential pressure at pump Δp_m : Differential pressure at motor δp : Pressure drop along pipe β_{fluid} : Fluid bulk modulus V_{fluid}: Total fluid volume in pipe V_n: Pump displacement V_m: Motor displacement k_{leak,(p or m)}: pump/motor leakage coefficient L_{pipe}: Pipe length D_{pipe}: Pipe diameter A_{pipe}: Pipe cross-sectional area ρ_{fluid} :Fluid density Q,Q_{pipe}: Fluid flow rate in pipe f: Friction factor v_{fluid} : Fluid kinematic viscosity r_{pipe}: Roughness of pipe Re: Reynold number

"Continuity Equation"

$$\Delta \dot{p}_{x} = \frac{\beta_{fluid}}{V_{fluid}} \left(V_{p} \omega_{r} - V_{m} \omega_{m} - k_{leak,p} \Delta p_{p} - k_{leak,m} \Delta p_{m} \right)$$

$$\delta p = f rac{L_{ extit{pipe}}}{D_{ extit{pipe}}} rac{
ho_{ extit{fluid}}}{2A_{ extit{pipe}}^2} Q_{ extit{pipe}}^2$$

$$f(Q_{pipe}) = \frac{1}{\left(-1.8\log_{10}\left(\frac{6.9}{\text{Re}} + \left(\frac{r_{pipe}/D_{pipe}}{3.7}\right)^{1.11}\right)\right)^{2}}$$

$$\operatorname{Re} = \frac{Q_{pipe}D_{pipe}}{A_{pipe}\nu_{fluid}}$$

 $\omega_{\text{m}} : \text{Motor speed} \\ \omega_{\text{sync}} : \text{Synchronous speed} \\ K_s : \text{Synchronizing torque coefficient} \\ K_d : \text{Damping torque coefficient} \\ \theta_{\text{grid}} : \text{Phase of the grid voltage} \\ \theta_{\text{m}} : \text{Synchronous generator mechanical angle} \\ J_m : \text{Rotor inertia} \\ V_m : \text{Motor displacement} \\ \Delta P_m : \text{Differential pressure at motor} \\ \eta_{\text{mech,m}} : \text{Pump mechanical efficiency} \\ \tau_{\text{load}} : \text{Torque load from synchronous generator} \\$

"Newton's Second Law"

Control Strategy

Power Coefficient	Pump Loss	Motor Loss	Friction Loss
$C_p(\lambda, \beta)$	$Loss_{leak, pump} = k_{leak, p} \Delta p_p^2$	$Loss_{mech,motor} = (1 - \eta_{mech,m}) V_m \omega_m \Delta p_m$	$Loss_{fric} = f \frac{L_{pipe}}{D_{pipe}} \frac{\rho_{fluid}}{2A_{pipe}^2} Q^3$
	$Loss_{\mathit{mech},\mathit{pump}} = (1 - \eta_{\mathit{mech},\mathit{p}}) rac{V_{\mathit{p}} \Delta p_{\mathit{p}}}{\eta_{\mathit{mech},\mathit{p}}} \omega_{r}.$	$Loss_{leak,motor} = k_{leak,m} \Delta p_m^2$	
	$Loss_{total} = Loss_{mech,pump} + Loss_{leak,pump} +$ $Loss_{mech,motor} + Loss_{leak,motor} + Loss_{fric}$.	$C_T = \frac{P_{out}}{P_{rotor}} = \frac{1 - Loss_{total}}{P_{rotor}}$	

Control Strategy:

- 1. Maximize power coefficient by controlling hydraulic pump displacement
- 2. Maximize transmission coefficient by controlling hydraulic motor displacement

Strategy 1: Maximize C_p

$$\dot{\omega}_{r} = \frac{1}{J_{r}} (\tau_{rotor} - \frac{V_{p} \Delta p_{p}}{\eta_{mech,p}})$$

$$au_{rotor} = \frac{1}{2} \rho_{air} AR \frac{C_p}{\lambda} (\lambda, \beta) U^2$$

$$\frac{V_p \Delta p_p}{\eta_{mech,p}} = K \omega_r^2$$

$$V_p = \frac{K\omega_r^2 \eta_{mech,p}}{\Delta p_p}.$$

$$K = \frac{1}{2} \rho_{air} A R^3 \frac{C_{p,\text{max}}}{\lambda_{opt}^3}$$

K. E. Johnson, L. Y. Pao, M. J. Balas, and L. J. Fingersh, "Control of Variable-Speed Wind Trubines: Standard and Adaptive Techniques for Maximizing Energy Capture," *IEEE Control Systems Magazine*, vol. 26, no. 3, pp. 70-81, Jun. 2006.

Strategy 2: Maximize C_T

Control Realization

Steady State Operating Point

System Dynamics

System Dynamics

Control Strategy 1

$$V_{\mathit{p1}} = \frac{K_{1} \omega_{\mathit{r1}}^{2} \eta_{\mathit{mech},\mathit{p1}}}{\Delta p_{\mathit{p1}}} \,. \label{eq:vp1}$$

$$V_{p2} = \frac{K_2 \omega_{r2}^2 \eta_{mech,p2}}{\Delta p_{p2}}.$$

$$\Delta \dot{p}_{x} = \frac{\beta_{fluid}}{V_{fluid}} \left(Q_{p1} + Q_{p2} - Q_{m} \right)$$

Nacelle

$$\begin{aligned} Loss_{total} &= Loss_{mech,pump1} + Loss_{mech,pump2} + Loss_{leak,pump1} + \dots \\ \dots Loss_{leak,pump2} &+ Loss_{mech,motor} + Loss_{leak,motor} + Loss_{fric} \,. \end{aligned}$$

$$C_{T} = \frac{P_{out}}{P_{rotor1} + P_{rotor2}} = \frac{1 - Loss_{total}}{P_{rotor1} + P_{rotor2}}. \label{eq:ctotal}$$

Conclusion

In this study, control strategies are proposed for wind turbines that use a hydrostatic transmission system with the hydraulic pump in the nacelle and the hydraulic motor and the synchronous generator on the ground level to optimize wind energy capture

Single Turbine Configuration

$$\boldsymbol{V}_{p} = \frac{\boldsymbol{K} \boldsymbol{\omega}_{r}^{2} \boldsymbol{\eta}_{\mathit{mech},p}}{\Delta \boldsymbol{p}_{p}}.$$

$$V_{m} = 0.0002 \frac{\omega_{r} R}{\lambda_{opt}} - 0.0003$$

Double Turbine Configuration

$$\begin{split} \boldsymbol{V}_{p1} &= \frac{K_{1} \omega_{r1}^{2} \boldsymbol{\eta}_{\textit{mech},p1}}{\Delta p_{p1}}. \\ \\ \boldsymbol{V}_{p2} &= \frac{K_{2} \omega_{r2}^{2} \boldsymbol{\eta}_{\textit{mech},p2}}{\Delta p_{p2}}. \end{split}$$

$$V_m = f(\omega_{r1}, \omega_{r2})$$

Acknowledgement

I would like to thank you Dr. Ping Hsu for his kind advice and motivation for me to accomplish this study.

Any Question?