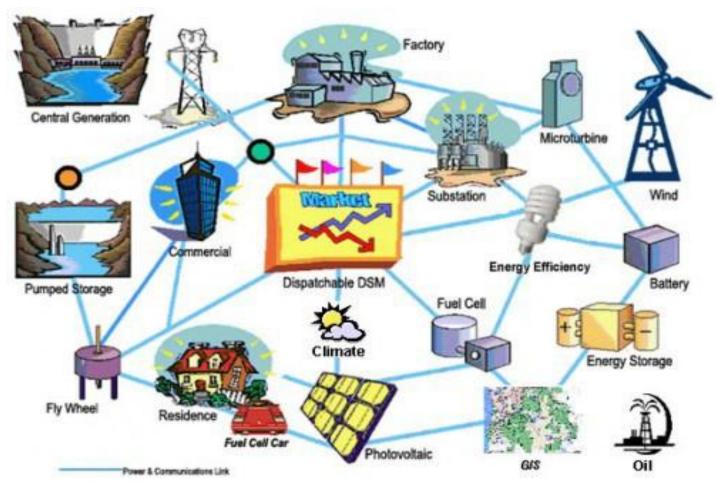
Smart Grid Dispatch Optimization Control Techniques for Transactive Energy Systems

Shawn Chandler Department of Electrical and Computer Engineering



Transactive Systems

- Transactive systems
 - Use an economic signal to integrate systems across the electrical power system interconnect
 - If the price is low, participants draw power from the grid
 - If the price is high, participants draw or reduce power from local resources such as distributed generation, demand response and so forth
- Demonstrated in the Pacific Northwest Smart Grid Project – PNNL / Battelle

Transactive System is a Complex System

Source: Cleantechnica.com 2012

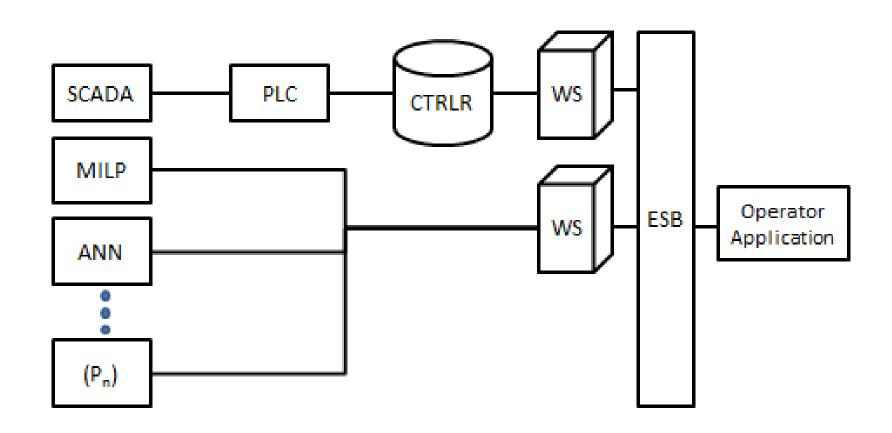


Smart Grid Control Challenges

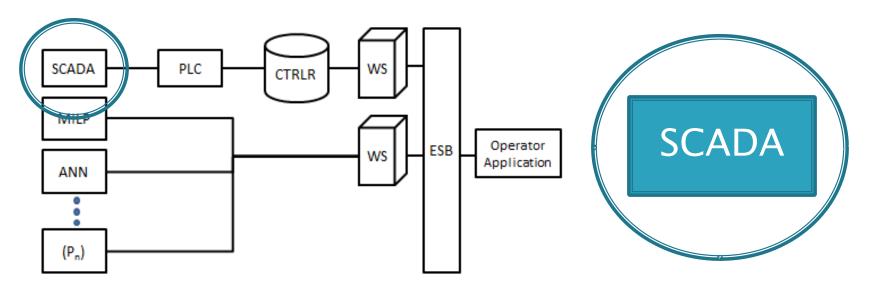
- Transactive systems require comprehensive integrated control techniques
- Utilities show a tendency to build separate infrastructures based on programmatic interests, so resource management tools end up separated across the grid (or enterprise):
 - Forecasting (real-time operations concern)
 - SG System Dispatch (customer program concern)
 - Distribution automation (distribution / system protection concern)

Research Approach

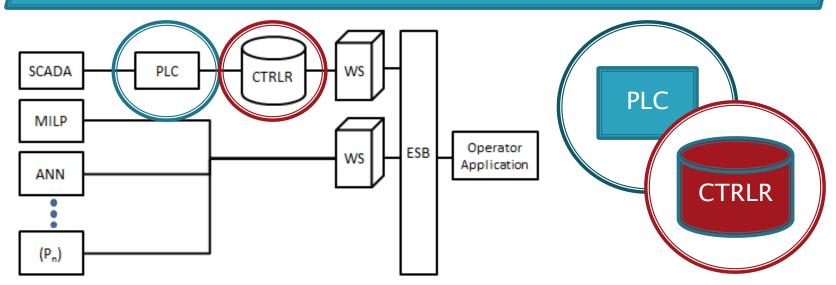
- A software based controller to compare outputs from separate dispatch optimization tools resulted in a management platform
- Integrated two separate optimization tools:
 - Mixed integer linear programming (MILP) microgrid dispatch tool (courtesy of University of Colorado – Boulder and funded by Intel – Labs: Power Systems R&D)


Artificial neural network (ANN)
 microgrid dispatch tool
 (funded by PGE & courtesy of PNWSGD)

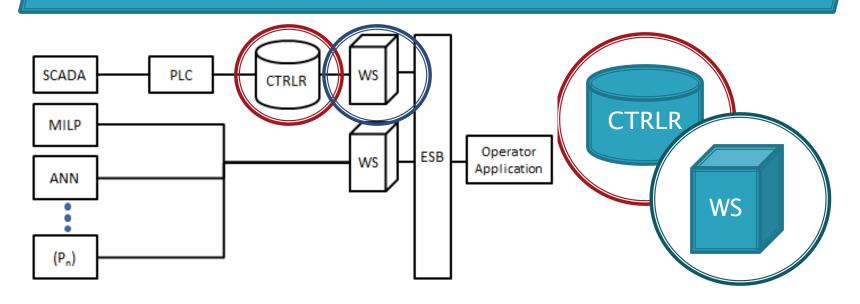




IEC-61970 System Approach

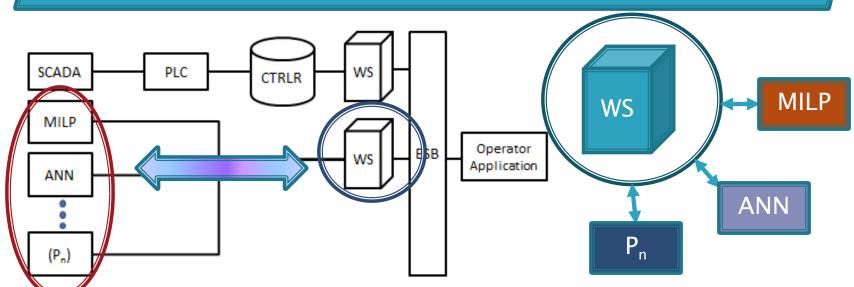


SCADA system may provide real time connectivity to distribution components, real-time systems, metered systems, environmental sensing, and so forth

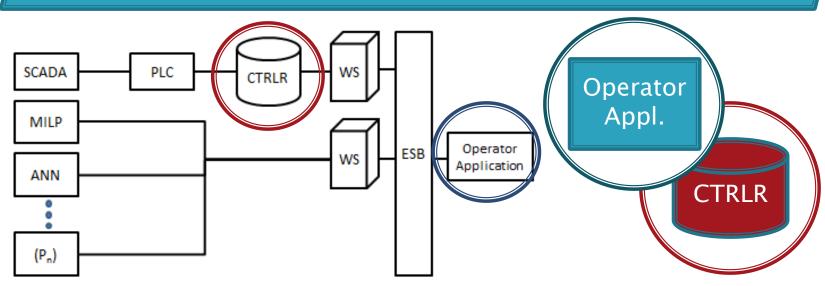


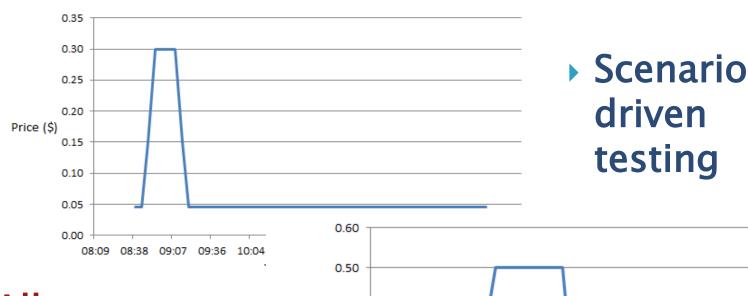
- PLC may provide real time connectivity using a SCADA bridge software application :subscribes to registers
- SCADA bridge populates controller tables in real-time

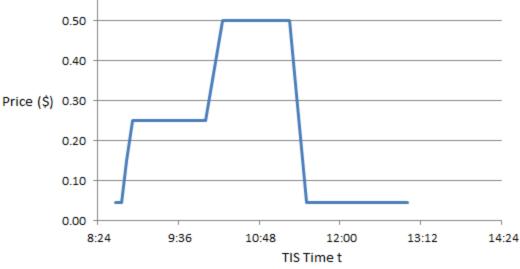




- The controller system exposes control data for web services use (read/write)
- A web server publishes data to an enterprise service bus as XML messages




- A web server service retrieves data across the enterprise service bus
- Computational intelligence systems may subscribe and / or publish data to the web server (dispatch & optimization, etc.)



- Operator application interacts with the controller: commit strategy / review data
- Contextual logic as a meta-layer above any number of platforms: controls system response in SCADA assets

System Testing

 Allow operator to test future scenarios with different tools

System Comparison Criteria

By Simulator P

- Total and average simulation time
- Total and average cost avoided
- Total reduction of peaks
- Total dispatches by feeder asset (DR, energy storage, etc.)
- Total cost of asset dispatches
- Failures to write schedule by next cycle
- By interval forecast period -by feeder N
 - Total load and load shed
 - Asset constraint violations

System Comparison Sample Data

 Grid operator may interact with the controller and choose a specific dispatch from separate optimization platforms

	TI	S Interv	al		P ₁ TF	S (N	/W)		ı	P ₂ T	FS	(MW)	
	13:00			1.212					1.658				
	13:15			1.273					1.662				
	13:30			1.334					1.667				
	13:45			1.395					1.672				
Load (MW)	14:00			1.457							•	1.677	
	2.50												
	2.25										_		
	2.00									X	Y)	
	1.75			_			_	/	_	Peak	Redu	uction ——	
	1.50		_										
	1.25						<u> </u>	ransa	active I	Feedb	ack S	ignal	
	1.00	08:40 08:55 09:10	09:25	10:30	12:00	13:30	14:15	19:00	22:00	04:00	07:00	17:00	

TIS Signal Period

Conclusions and Lessons Learned

- Successfully demonstrated that independent simulator results may be compared in realtime for use in low-latency control applications
 - An assessment of operations strategy or operator strategy may be automated or applied, respectively, using such an approach
- Difficulties and challenges
 - Transforming data for direct comparison, i.e. inputs scaled correctly, outputs scaled correctly from separate platforms
 - Platforms are generally "fixed" to control their resources and must be disconnected

Thank You

Contact info:

Shawn Chandler - scha@pdx.edu
Instructor, Power Systems Graduate Program
Dept. of Electrical and Computer Engineering
Portland State University

Dr. Robert Bass - <u>bobbass@ece.pdx.edu</u>
Program Chair, Power Systems Graduate Program
Dept. of Electrical and Computer Engineering
Portland State University

