

Proudly Operated by Battelle Since 1965

Advances in Power Grid Research in the Pacific Northwest

EMILIE HOGAN, PHD

Pacific Northwest National Laboratory SusTech, Portland, OR, July 26, 2014

Overview

Proudly Operated by Battelle Since 1965

I will talk about the contributions of three major projects at PNNL to the power grid in the Pacific Northwest:

- Pacific Northwest Smart Grid Demonstration Project
- PNNL Future Power Grid Initiative
- Multifaceted Mathematics for Complex Energy Systems (M2ACS)

December 11, 2014 2

Overview

- ► Pacific Northwest Smart Grid Demonstration Project
- PNNL Future Power Grid Initiative
- Multifaceted Mathematics for Complex Energy Systems (M2ACS)

December 11, 2014 3

Pacific Northwest Demonstration

Project

What:

- \$178M (\$89M private,
 \$89M ARRA-funded),
 5-year demonstration
- 60,000 metered customers in 5 states

• Why:

- Quantify costs and benefits
- Develop communications protocol
- Develop standards
- Facilitate integration of wind and other renewables

• Who:

Led by Battelle and partners including BPA,
11 utilities,
2 universities, and
5 vendors

How?

- Testing technology which ...
 - Informs when energy is cheaper
 - Sends signals to distribute decision making
 - Integrates renewable energy
- In order to ...
 - Keep costs down
 - Save energy
 - Boost reliability
 - Shorten outages

Pacific Northwest SMART GRID DEMONSTRATION PROJECT

PNWSG Demo Status Update

- Viewed by DOE as top tier performer and strategic
- Utility install lagged schedule; data still adequate for core analytics
- Gathered 300M records to date in EIOC
- BPA PNW SG business case drafted, positive
- Preliminary Observations:
 - Avista saw 3x higher benefits from AMI and DA
 - Fox Island leverage for cable outage
 - BPA key events detected by transactive model

Post-FY15 Completion

- ~\$77M of smart grid assets installed and in use in participating regional utilities
- Transactive control technology developed, documented and tested
- Transactive control theory development needed
- Operational use of transactive control specific monetized operational use yet to be defined
- IP captured commercialization is critical for utility adoption

Overview

- Pacific Northwest Smart Grid Demonstration Project
- PNNL Future Power Grid Initiative
- Multifaceted Mathematics for Complex Energy Systems (M2ACS)

December 11, 2014 7

The Grid Challenge

- Over the next 15 years, we expect
 - 15% of electricity coming from intermittent renewable power
 - Generation changing from centralized to distributed, two way model
 - Millions of smart meters and sensors, plug-in hybrid vehicles, and electricity storage coming online

- New challenges
 - How can we manage large-scale data in real time?
 - How do we safeguard high reliability and security?
 - How will we run such a complex grid?
- → We need new concepts and tools that transform grid operation and planning

Data and Computational Complexity

	Today – SCADA data	Tomorrow – Phasor data	Improvement
Variety	voltage + current	+ phase angle	more information
Velocity	1 sample/4 seconds	30-120 samples/second	~200x faster
Volume	8 terabytes/year	1.5 petabytes/year	~200x more data*
Veracity	unseen ms-oscillations	oscillations seen at ~10ms	greater accuracy

^{*} Transmission level only

	0-2 years	3-5 years	6-10 years +
Model Size	10 ⁴ (major transmission elements)	10 ⁵ (+ major renewable and major loads)	10 ⁶ (+ renewable, loads, DGs)
Simulation Time to Solution	2-4 minutes	2-4 seconds	10 msec – 1 sec
State Estimation	100 MFLOPS	10 GFLOPS	10 ExaFLOPS
 Contingency Analysis 	100 MFLOPS	1 TFLOPS	10 PFLOPS
Dynamic Simulation	1 MFLOPS (10x slower than real-time)	100 GFLOPS (10x faster than real-time)	10 TFLOPS (10x faster than real-time)
 Small Signal Stability 	10 GFLOPS	100 TFLOPS	1 ExaFLOPS

Our answer - Future Power Grid Initiative

Proudly Operated by Battelle Since 1965

The Future Power Grid Initiative (FPGI)

- A multi year, multi million dollar, interdisciplinary initiative
- Funded through PNNL's Laboratory Directed Research and Development Program
- Led by Henry Huang, Ph.D., P.E., and Jeff Dagle, P.E.

Approach

- Combining PNNL's distinctive capabilities in power systems, dataintensive high-performance computing and visual analytics
 - Designing computational approaches to deliver a new class of realtime tools for grid modeling and simulation
 - Expanding power grid networking to support large scale and secure real-time data flow
 - Advancing state-of-the-art visual analytics to convert very large volumes of multi-domain real-time data into actionable information 10

Focus Area 1 – Networking and Data Management

- Identify, filter, and reduce data to ensure real-time performance
- Enable large-scale information network modeling and simulation environments
- Develop operational sensor prototypes that allow adaptive autonomous operation supporting new distributed control paradigms

Focus Area 2 – Modeling, Simulation, and Analysis

- Expand power grid models to include smart consumer devices and intermittent energy sources
- Develop new modeling approaches for integrated, multiscale transmission and distribution analysis
- Develop new algorithms and computational platforms for realtime power grid analysis
- Design computational tools for power grid planning

Focus Area 3 – Visualization and Decision Support

- Visualization and Decision Support projects focus on creating computational methods and software tools to aid human-in-the-loop analysis and decision making for grid operations and strategic planning.
- Research directed towards the interface between the operators, planners and policy-makers and the future power grid.

FPGI (journey) leads to GridOPTICSTM (product) Pacific Northwest NATIONAL LABORATO

Proudly Operated by Battelle Since 1965

Integrated view of FPGI elements

GridOPTICS™

Grid Operation and Planning Technology Integrated Capabilities Suite

Our end-goal - product of the FPGI

Proudly Operated by Battelle Since 1965

GridOPTICS™ – a suite of tools to enable three fusions:

- Bridging operation and planning to enable more seamless grid management and control
 - Remove overhead involved in communication between operation and planning
 - Improve response when facing emergency situations
- Integrating transmission and distribution in end-to-end grid modeling and simulation capable of handling 10⁹ devices with uncertainty
 - Understand the emerging behaviors in the power grid due to smarter loads, mobile consumption, and intermittent generation
- Managing interdependency between power grid and data network (a test lab for power grid data networking is being set up)
 - Enable "all-hazard" analysis
 - Prepare grid operators and planners with the knowledge of data network impact on the power grid

Progress highlights

- Capabilities Developed
 - Launched powerNET, a research laboratory and testbed for power grid data networking, equipment, and technology
 - Developed models for large number of distributed energy resources
- Technical Leadership
 - More than 30 papers, one book chapter published
 - Four patent applications & five copyrights and open source licenses
 - Hosted the first HPC power grid workshop in conjunction with SC11 and SC12, ICSE Workshop in Zurich and organized SC13 workshop in Denver, Colorado.
- Impact Examples
 - Early success of the Initiative resulted in DOE and DHS funding support to further develop the technology
 - Strengthened relationships with national and regional power grid organizations. Major ISO stated FPGI's approach to Decision Support was "changing the paradigm of the power industry."

Overview

- Pacific Northwest Smart Grid Demonstration Project
- PNNL Future Power Grid Initiative
- Multifaceted Mathematics for Complex Energy Systems (M2ACS)

December 11, 2014

Complex energy systems share common challenges that motivate new math

Proudly Operated by Battelle Since 1965

- Complex graphs
- Unique Randomness
- Multi-spatial-temporalscale modeling
- Model vs. observations: neither is perfect
- Many possible futures: a control challenge
- Interdependency: gas bubble, cyber security,

. . .

How to model graph evolution when the graph is neither random nor small-world?

Proudly Operated by Battelle Since 1965

- Power grids do not resemble random or small-world graphs.
- It is local clusters connected through regional and global layers.
 - It is a great challenge to capture such unique graph features.

Source: Duncan J. Watts and Steven H. Strogatz, "Collective dynamics of 'small-world' networks", Nature 393, 440-442(4 June 1998)

Source: NPR, http://www.npr.org/2009/04/24/110997398/visualizing-the-u-s-electric-grid

How to construct data assimilation problems when noises are not Gaussian?

Proudly Operated by Baffelle Since 1965

 Non-Gaussian noise properties determined from actual phasor measurements

Integrative math to address these challenges for better energy systems

We have made great progress in building predictive modeling capabilities

- Predict uncertainty due to model reduction
- Predict uncertainty propagation
- Predict system states with measurements
- Predict future power grid topology

Predict uncertainty due to model reduction through graph theory and principle component analysis

Proudly Operated by Battelle Since 1965

Work by Emilie Hogan, Mahantesh Halappanavar, Eduardo Cotilla-Sanchez (OSU)

 Model reduction using spectral clustering with a Fourier transform based pseudo distance

Modeled effect of randomness in wind speed and direction on dynamic response of a wind farm

- Dynamic-feature Extraction, Attribution and Reconstruction (DEAR) Method for Power System Model Reduction, IEEE Transactions on Power Systems, 99:1-11, 2014.
- Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines, 2014 IEEE Power & Energy Society General Meeting, National Harbor, MD, July 2014.

Predict uncertainty propagation using probability density function (PDF) method

Proudly Operated by Battelle Since 1965

Work by Alexandre Tartakovsky, David Barajas-Solano, Peng Wang

Formulate power grid model as a set of stochastic Differential Algebraic Equations -> Langevin equations with colored noise

$$\frac{d\theta}{dt} = \omega_{\rm B}(\omega - \omega_{\rm s}),$$

$$\frac{d\omega}{dt} = \frac{\omega_{\rm s}}{2H} \left[P_{\rm m} - P_{\rm e} - D \left(\omega - \omega_{\rm s} \right) \right],$$

$$P_{\rm e} = \frac{EV}{X} \sin \theta.$$

$$\frac{\mathrm{d}X_i}{\mathrm{d}t} = h_i(\mathbf{X}, t) + \sum_{j=1}^N g_{ij}(\mathbf{X}, t)\xi_j(t), \quad i = 1, \dots, N$$

^{- &}quot;Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input", in review for SIAM/ASA Journal on Uncertainty Quantification, 2013. Slide thanks to Henry Huang

Predict system states with measurements through data assimilation with non-

Gaussian noises

Work by Henry Huang

^{- &}quot;Noise Properties of Power Grid Measurements", SIAM Annual Meeting, Chicago, IL, July 7-11, 2014

Predict future power grid topology using graph theory

Proudly Operated by Battelle Since 1965

Work by Emilie Hogan, Mahantesh Halappanavar, Eduardo Cotilla-Sanchez (OSU), Daniel Duncan (OSU), Paul Hines (U of VT)

- Projection of topology per graph properties: degree, diameter, centrality, ...
- Graph representation of the full Polish and Western US power systems, showing layered structures.

- "Towards Effective Clustering Techniques for the Analysis of Electric Power Grids", Proc. 3rd Workshop on High Performance Computing, Networking and Analytics for the Power Grid, 2013
- "Parallel heuristics for scalable community detection", Proc. International Workshop on Multithreaded Architectures and Applications (MTAAP), IPDPS Workshops, May 23, 2014, Phoenix, AZ.
- "Scaling Graph Community Detection on the Tilera Many-core Architecture". Under review (conference). 26
- "Parallel Heuristics for Scalable Community Detection". Under review (journal).

 Slide thanks to Henry Huang

Math is needed to answer some of the key energy questions of national interest

- Predictive modeling enables high-fidelity real-time grid analysis for new methods to manage the emerging challenges in the power grid. It can help to answer key questions such as:
 - How much wind generation can a system afford without losing stability?
 - Is the system stable in the near future given predicted uncertainties in generation and load?
 - How to optimize the power grid to mitigate uncertainties?
 - At what level loads should be aggregated in models?
 - How to quantify the impact of stochastic distributed energy resources on grid reliability?
 - How would the power grid and other energy system evolve? And what is the policy implications of such evolution?

Summary

- PNNL is a major player in many research projects for advancement of power grid technologies
- ► In the SmartGrid Demonstration Project we are helping to advance technologies allowing for consumer-in-the-loop interaction in order to use more renewables and keep costs down
- ► The Future Power Grid Initiative is making strides in real-time analysis and visualization of power grid data
- ► The M2ACS project is focused on technical research questions in the area of mathematics which are inspired by real power grid problems
 - Significant math development is required in order to understand and manage emerging behaviors in complex energy systems.
 - Such math development leverages other domain's work but also has unique aspects that requires new math.
- At PNNL, we have a great opportunity to link the fundamental math development with applied research – a necessary pathway to make real impact.

December 11, 2014 28

Questions?

Proudly Operated by Baffelle Since 1965

December 11, 2014