Enhancing Test Power Systems for Dynamic Cascading Outage Simulations

Pierre Henneaux¹, Jiajia Song², and Eduardo Cotilla-Sanchez²

1: University of Washington 2: Oregon State University

Introduction

- Cascading outages
- Existing methodologies
- Challenges of dynamic model
- Mechanisms of cascading outages
 - Why dynamic simulation?
 - Needed data
- The proposed standard systems
- Future work and conclusion

• The contemporary power network is operated near its marginal limits.

 Definition by NERC: "uncontrolled loss of any system facilities or load, whether because of thermal overload, voltage collapse, or loss of synchronism, except those occurring as a result of fault isolation".

Normal operation

One line is tripped

Power flow reroute

Exceeds the limit

Trip the second line or reduce load

- Main reason for large blackouts
- Impacts
 - The amount of power that being taken away and the amount of people are un-served caused by the event.
 - e.g., July 30-31 2012 in India, <u>32 GW</u> of generating capacity was taken off line, which affected over <u>620</u> million people.

 Are cascading outages or large blackouts going to happen again?

Satellite image before and after the blackouts, 2003 North America

Introduction: methodologies

- Contingency analysis
 - Steady state or quasi-steady state model
 - High level probabilistic model
 - Modern techniques (e.g., graph theory, PMU, HPC)
 - Dynamic model

Introduction: challenges

- N-x contingency
 - Screening techniques
 - HPC and parallel computing
- Dynamic models complexity
 - Use generic models
- Algorithmic complexity
 - Better numerical methodology
- Limited access to dynamic data
 - 'Fingers crossed'

- Introduction
 - Cascading outages
 - Existing methodologies
 - Challenges of dynamic model

Mechanisms

- Why dynamic simulation?
- Needed data
- The proposed systems
- Future work and conclusion

Mechanisms

- Failure of the overloaded branches by over-current protections (e.g., 2003 Italian and NE America)
- Failure of the overloaded branches by distance protections (e.g., 2003 NE America and SE Canada)
- Thermal failures of overloaded branches (e.g., 2003 NE America)
- Voltage instability
- Frequency instability (e.g., 2003 Italian, 2006 Europe)
- Transient angular instability
- Small-disturbance angular instability (e.g., 1996 WSCC)
- Unwanted trips due to hidden failures (e.g., 1996 WSCC)

Mechanisms: why dynamic model

Modeling environment

Mechanism	Model		
Branch outages by OC & DIST relays	Static / Dynamic		
Branch outages by thermal failures	Static / Dynamic		
Voltage instability	Static / Dynamic		
Frequency instability	Dynamic		
Transient angular instability	Dynamic		
Small disturbance angular instability	Dynamic		
Unwanted trips due to hidden failures	Static / Dynamic		

Dynamic model is salient

Mechanisms: needed data

- Introduction
 - Cascading outages
 - Existing methodologies
 - Challenges of dynamic model
- Mechanisms
 - Why dynamic simulation?
 - Needed data
- The proposed systems
- Future work and conclusion

Proposed systems

THE ORIGINAL GENERAL INFORMATION OF THE PROPOSED DYNAMIC TEST SYSTEMS

Info.	Number	Number	Number	Number	Line	Dynamic	Protection
Test Case	of buses	of branches	of generators	of loads	ratings	data	data
IEEE 9 Bus [8]	9	9	3	6	Yes	Yes (Partial) ¹	No
Kundur's 2-Area [9]	15	12	4	2	No	Yes (Partial) ¹	No
IEEE 39 Bus [10]	39	46	10	19	Yes	Yes (Partial) ¹	No
5-Area 68 Bus [11]	68	87	16	53	No	Yes (Partial) ¹	No
IEEE 3-Area RTS [12]	73	120	99	60	Yes	Yes (Partial) ¹	No

1: Partial — only a limited set of dynamic data are available (e.g., data for machine dynamics is included but no data for exciter, governor and load.)

- Cascading outage study requires large systems
- Small system such as 9-bus system is more suitable for model validation
- This initial study starts with relatively small cases to ensure the maturity and fidelity of our approach

Proposed systems

For example:

Exciter --- IEEE AC4A or modified model

Governor --- IEEE TGOV1 or other generic models

Load --- ZIPE or adapted generic dynamic load model

Parameters

Computed based on the existing information and additional rules

Proposed systems

Protection relays

- Line protection:
 - Over-current relay
 - Distance relay
- Generator protection (not always included):
 - Under-frequency
 - Under-voltage
 - Over-excitation
- Load shedding:
 - Under-voltage load shedding
 - Under-frequency load shedding

- Introduction
 - Cascading outages
 - Existing methodologies
 - Challenges of dynamic model
- Mechanisms
 - Why dynamic simulation?
 - Needed data
- The proposed systems
- Future work and conclusion

Conclusion

- Discussed the need of dynamic data
- Proposed a small set of test systems as standard cases (available in our test system archive)
- It is useful to homogenize and advance dynamic simulations for the study of cascading outages from the stability and protection perspective
- Publish more test systems by systematically generating dynamic data and protection data

Thank you for your attention!

Questions?

