

Relay Protection Condition Assessment Based on Variable Weight Fuzzy Synthetic Evaluation

Speaker:Liang WeichenSchool :North China Electric Power UniversityEmail :liangweichenheng@163.com

A method

Variable Weight Fuzzy Synthetic Evaluation (VWFSE)

It is used for relay protection condition assessment. It is a improved method of fuzzy synthetic evaluation (FSE).

Methods

A considerable ambiguity and uncertainty relationship between the condition of relay protections and their assessment parameters. Expert Assessment Model

Intelligent Technologies

Fuzzy Theory

Fuzzy Synthetic Evaluation (FSE)

FSE

- It is a common method for condition assessment and is getting more and more attention.
- FSE is designed to group raw data into several different categories according to membership functions.

Deficiency

- The weights of assessment parameters are constant.
- The assessment result is not satisfied.

Variable Weight Fuzzy Synthetic Evaluation (VWFSE)

Fuzzy Distribution Method

Relative Humidity

Normal Condition Caution Condition		Abnormal Condition	Failure Condition		
$\begin{cases} 1 & x \le 0.75 \\ \frac{0.95 - x}{0.2} & 0.75 < x \le 0.95 \\ 0 & 0.95 < x \end{cases}$	$\begin{cases} 0 & x \le 0 \\ \frac{x}{0.75} & 0 < x \le 0.75 \\ 1 & 0.75 < x \le 0.85 \\ \frac{0.95 - x}{0.1} & 0.85 < x \le 0.95 \\ 0 & 0.95 < x \end{cases}$	$\begin{cases} 0 & x \le 0 \\ \frac{x}{0.85} & 0 < x \le 0.85 \\ 1 & 0.85 < x \le 0.95 \\ \frac{1-x}{0.05} & 0.95 < x \le 1 \\ 0 & 1 < x \end{cases}$	$\begin{cases} 0 & x \le 0.75 \\ \frac{x - 0.75}{0.2} & 0.75 < x \le 0.95 \\ 1 & 0.95 < x \end{cases}$		
	trapezoid	↑ distribution			

where r_{nm} is the value of membership function.

VWFSE – Determining Weights

VWFSE – Determining Weights

$$B = V \square R_{n \times m}$$

where \Box denotes the fuzzy operator.

(4)

Weighted averaging operator

VWFSE - The Procedure

Case Study

	Assessment parameters	Value			
	Environment Temperature	42°C			
	Relative Humidity	86%			
	Familial Defects	Once and repaired			
	Operating Life	3 years			
	Anti-accident Measure	All done			
Relay protection	Beyond Periodical Inspection Period	Half a year			
ucrice	Software Fault Condition	10 times			
	Module Fault Condition	Twice			
	Communication Equipment Fault Condition	Once			
	Power Supply Operating Life	3 years			
	Operating Environment	59°C			
	Operation Box Familial Defects	Once and unrepaired			
	Circuit Anti-accident Measure	All done			
<u>Secondary circuit</u>	Circuit Infrared Temperature	13°C beyond environment temperature			
	Circuit Fault Condition	Twice			
	Insulation Resistance	0.9ΜΩ			
	Corrosion	5%			
	Blocking	Twice in cable holes			
	The Value of Differential Current	0.5 times smaller than normal range			
Channel condition	The error rate of Optical Fiber Channel	0.5 times smaller than alarm value			
u:	The interruption of Optical Fiber Channel	None			

Case Study

The Weights Comparison Table

FSE	VWFSE			
$W_{A1} = [0.14, 0.16, 0.26, 0.12, 0.22, 0.1]$	$V_{A1} = [0.147, 0.502, 0.136, 0.071, 0.092, 0.05]$			
$W_{A2} = [0.267, 0.4, 0.2, 0.133]$	$V_{A2} = [1, 0, 0, 0]$			
$W_{B1} = [0.158, 0.358, 0.292, 0.192]$	$V_{B1} = [0.195, 0.467, 0.19, 0.147]$			
$W_{B2} = [0.342, 0.308, 0.208, 0.142]$	$V_{B2} = [0.142, 0.719, 0.052, 0.088]$			

Case Study

Fuzzy Kelanon Maura rable										
FSE				VWFSE						
$R_{A2} =$	$\begin{bmatrix} 0\\ 0.57\\ 0.018\\ 0.816 \end{bmatrix}$	0 0.779 0.368 1	0 0.105 1 0.20369	$\begin{bmatrix} 1 \\ 0 \\ 0.632 \\ 0 \end{bmatrix}$	$R'_{A2} =$	$\begin{bmatrix} 0\\ 0.57\\ 0.018\\ 0.816 \end{bmatrix}$	0 0.779 0.368 1	0 0.105 1 0.20369	$ \begin{array}{c} 1\\ 0\\ 0.632\\ 0 \end{array} $	
$R_{B1} =$	0.209 0.287 1 1	1 1 0.449 0.8	0.822 0.007 0.086 0.3	0.088 0 0 0.071	$R'_{B1} =$	0.209 0.287 1 1	1 1 0.449 0.8	0.822 0.007 0.086 0.3	0.088 0 0 0.071	
$R_{B2} =$	0.939 0.25 1 0.135	0.57 0.833 0 0.939	0.047 1 0 1	0.061 0.667 0 0.895	$R'_{B2} =$	0.939 0.25 1 0.135	0.57 0.833 0 0.939	0.047 1 0 1	0.061 0.667 0 0.895	

Eurzy Dolation Matrix Table

FSE				VWFSE					
	Normal	Caution	Abnormal	Failure		Normal	Caution	Abnormal	Failure
B =	[0.393	0.344	0.148	0.116]	$B^{'} =$	[0.235	0.276	0.142	0.346

Conclusion

Conclusion

Welcome Criticism !

Thank

You!

My email

liangweichenheng@163.com