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* Multi actor/objective
* Dynamic, non-stationary

* Heterogeneous

* Large scale
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* Level of renewables in the power system to
40% by 2020. 17% in 2012

* 46 days above this instantaneously

* Best single day 2012 39% wind energy
* Wind curtailment 2.2% in 2011, 2.1% in 2012

* No more than 50% from non-synchronous
generation
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Algorithm Requirements

Multiple devices and objectives
Allow for complex models
Distributed control

Three types
* Probabilistic
* Learning/Planning

* Scheduling

aling
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* Two set point algorithms to control flexible
load

* Variable charging rate
* Uses an EV charger that can vary its power (0O-
100%)

* The transformer broadcasts the charging rate (O-
100%) that each of the available EVs should

charge at.

* The feedback is the measured aggregate power
demand at the transformer.
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Aggregated demand at transformer

* Variable connection rate W

* Uses a much simpler on-off

type of charger

flexible load
(controlled to a set point) base load
(influenced by pricing)

* The transformer broadcasts

the connection rate (0-100% probability) that each
of the available EVs should attempt to connect at.

* The feedback is the measured aggregate power
demand at the transformer.




Learning/Planning !#*‘3‘?‘

* Uses reinforcement learning
* Distributed W-Learning (DWL)

— Multiple policies on each agents
— Multiple agents collaborating
— Learn dependencies between neighbouring agents

* Each agent learns how its actions affect its

Local policies: LP1,LP2 DWL Remote policies: RP11,RP32
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*  Normal days prediction:

* Combines several techniques with various advantages (ANN, WNN,
ARIMA, NF)

* Small scale prediction of load
* Uses historical weather information from Dublin airport station
* Achieves 2.39% NRMSE (evaluation over 20 consec. days)

Load (W)
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* Parallel Transfer Learning is an on-line version of Transfer
Learning

* Source and target tasks learn simultaneously, sharing information whenever
they deem it necessary

* This allows the relatedness of tasks to be exploited

* Multiple transfers allow dynamicity of inter-policy relationships to
be shared

Transfer Learning Parallel Transfer Learning
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Evolutionary Algorithms are search methods that take their
inspiration from natural selection and survival of the fittest in the
biological world.

1: Randomly create an initial population of individuals (a.k.a. candidate
solutions).

2: repeat
3: Execute each individual and ascertain its fitness.

4: Select one or two individuals from the population with a probability based
on fitness to participate in genetic operations.

5: Create new individuals by applying genetic operations with specified
probabilities.

6: until an acceptable solution is found or some other stopping condition is
met (e.g., a maximum number of generations is reached).

7: return the best-so-far individual.
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* 90 houses — EV (available 15 hours require ~6.4

hours charging), water heater (4.5kw) and base
load

* 1 year long for seasonal variation




Results
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Ave. Water Ave. State of
Temperature | Charge

Base Line 45.02°C 81.5% 1.934 2.13
DWL 52.74°C 39.71% 3.9162 2.12
DWL + 54.05°C 10.43% 7.2869 1.63
Prediction

DWL + PTL 52.32°C 24.5% 2.5799 1.24
Set Point 60.74°C 43.71% 4.8198 1.65
User Aware 51.74°C 44.98% 2.3114 2.07

Set Point
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* More algorithms particularly centralized
(scheduling) and competitive approaches

* Greater scale testing

* Tweaking of algorithms
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Questions?

Thank you.




