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• Multi actor/objective 

• Dynamic, non-stationary 

• Heterogeneous 

• Large scale 

Smart Grid 
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• Level of renewables in the power system to 
40% by 2020. 17% in 2012 

• 46 days above this instantaneously 

• Best single day 2012 39% wind energy 

• Wind curtailment 2.2% in 2011, 2.1% in 2012 

• No more than 50% from non-synchronous 
generation 

Irish Targets   
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Residential Demand Response 
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• Multiple devices and objectives 

• Allow for complex models 

• Distributed control 

• Three types 

• Probabilistic 

• Learning/Planning 

• Scheduling 

 

Algorithm Requirements 
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• Two set point algorithms to control flexible 
load 

• Variable charging rate 
• Uses an EV charger that can vary its power (0-

100%) 

• The transformer broadcasts the charging rate (0-
100%) that each of the available EVs should 
charge at. 

• The feedback is the measured aggregate power 
demand at the transformer. 

Probabilistic 
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• Variable connection rate 

• Uses a much simpler on-off  

type of charger 

• The transformer broadcasts 

 the connection rate (0-100% probability) that each 
of the available EVs should attempt to connect at. 

• The feedback is the measured aggregate power 
demand at the transformer. 

Probabilistic 
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• Uses reinforcement learning 

• Distributed W-Learning (DWL)  
 Multiple policies on each agents 

 Multiple agents collaborating 

 Learn dependencies between neighbouring agents 

• Each agent learns how its actions affect its 
neighbours 

 

Learning/Planning 
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Learning/Planning 
• Normal days prediction: 

• Combines several techniques with various advantages (ANN, WNN, 
ARIMA, NF) 

• Small scale prediction of load 

• Uses historical weather information from Dublin airport station 

• Achieves 2.39% NRMSE (evaluation over 20 consec. days) 
 

Monday Tuesday Wednesday Thursday Friday 
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Learning/Planning 
• Parallel Transfer Learning is an on-line version of Transfer 

Learning 
• Source and target tasks learn simultaneously, sharing information whenever 

they deem it necessary 

• This allows the relatedness of tasks to be exploited 

• Multiple transfers allow dynamicity of inter-policy relationships to 
be shared 

 

 
Transfer Learning Parallel Transfer Learning 
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Evolutionary Algorithms are search methods that take their 
inspiration from natural selection and survival of the fittest in the 
biological world. 

 
1: Randomly create an initial population of individuals (a.k.a. candidate 
solutions). 
2: repeat 
3: Execute each individual and ascertain its fitness. 
4: Select one or two individuals from the population with a probability based 
on fitness to participate in genetic operations. 
5: Create new individuals by applying genetic operations with specified 
probabilities. 
6: until an acceptable solution is found or some other stopping condition is 
met (e.g., a maximum number of generations is reached). 
7: return  the best-so-far individual. 

 

Scheduling 
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• 90 houses – EV (available 15 hours require ~6.4 
hours charging), water heater (4.5kw) and base 
load 

• 1 year long for seasonal variation 

Scenario 
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Results  
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Method Ave. Water 
Temperature 

Ave. State of 
Charge 

δ(kW) PAR 

Base Line 45.02⁰C 81.5% 1.934 2.13 

DWL 52.74⁰C 39.71% 3.9162 2.12 

DWL + 
Prediction 

54.05⁰C 10.43% 7.2869 1.63 

DWL + PTL 52.32⁰C 24.5% 2.5799 1.24 

Set Point 60.74⁰C 43.71% 4.8198 1.65 

User Aware 
Set Point 

51.74⁰C 44.98% 2.3114 2.07 

Results  
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• More algorithms particularly centralized 
(scheduling) and competitive approaches 

• Greater scale testing 

• Tweaking of algorithms 

Future Work 



Questions? 

Thank you. 

 

 

 


