

Self-Organising Algorithms for Residential Demand Response

Adam Taylor, Ivana Dusparic, Colin Harris, Andrei Marinescu, Edgar Galván-López, Fatemeh Golpayegani, Siobhán Clarke, Vinny Cahill

Smart Grid

- Multi actor/objective
- Dynamic, non-stationary
- Heterogeneous
- Large scale

Irish Targets

- Level of renewables in the power system to 40% by 2020. 17% in 2012
- 46 days above this instantaneously
- Best single day 2012 39% wind energy
- Wind curtailment 2.2% in 2011, 2.1% in 2012
- No more than 50% from non-synchronous generation

Residential Demand Response

Algorithm Requirements

- Multiple devices and objectives
- Allow for complex models
- Distributed control
- Three types
 - Probabilistic
 - Learning/Planning
 - Scheduling

Probabilistic

- Two set point algorithms to control flexible load
- Variable charging rate
 - Uses an EV charger that can vary its power (0-100%)
 - The transformer broadcasts the charging rate (0-100%) that each of the available EVs should charge at.
 - The feedback is the measured aggregate power demand at the transformer.

Probabilistic

Aggregated demand at transformer

- Variable connection rate
 - Uses a much simpler on-off type of charger
 - The transformer broadcasts
 - the connection rate (0-100% probability) that each of the available EVs should attempt to connect at.
 - The feedback is the measured aggregate power demand at the transformer.

Learning/Planning

- Uses reinforcement learning
- Distributed W-Learning (DWL)
 - Multiple policies on each agents
 - Multiple agents collaborating
 - Learn dependencies between neighbouring agents
- Each agent learns how its actions affect its neighbours

Learning/Planning

- Normal days prediction:
 - Combines several techniques with various advantages (ANN, WNN, ARIMA, NF)
 - Small scale prediction of load
 - Uses historical weather information from Dublin airport station
 - Achieves 2.39% NRMSE (evaluation over 20 consec. days)

Learning/Planning

- Parallel Transfer Learning is an on-line version of Transfer Learning
 - Source and target tasks learn simultaneously, sharing information whenever they deem it necessary
- This allows the relatedness of tasks to be exploited
- Multiple transfers allow dynamicity of inter-policy relationships to be shared

Transfer Learning

Parallel Transfer Learning

Scheduling

Evolutionary Algorithms are search methods that take their inspiration from natural selection and survival of the fittest in the biological world.

- 1: Randomly create an *initial population* of individuals (a.k.a. candidate solutions).
- 2: repeat
- 3: Execute each individual and ascertain its fitness.
- 4: Select one or two individuals from the population with a probability based on fitness to participate in genetic operations.
- 5: Create new individuals by applying *genetic operations* with specified probabilities.
- 6: **until** an acceptable solution is found or some other stopping condition is met (e.g., a maximum number of generations is reached).
- 7: **return** the best-so-far individual.

Scenario

- 90 houses EV (available 15 hours require ~6.4 hours charging), water heater (4.5kw) and base load
- 1 year long for seasonal variation

Results

Results

Method	Ave. Water Temperature	Ave. State of Charge	δ(kW)	PAR
Base Line	45.02°C	81.5%	1.934	2.13
DWL	52.74°C	39.71%	3.9162	2.12
DWL + Prediction	54.05°C	10.43%	7.2869	1.63
DWL + PTL	52.32°C	24.5%	2.5799	1.24
Set Point	60.74°C	43.71%	4.8198	1.65
User Aware Set Point	51.74°C	44.98%	2.3114	2.07

Future Work

- More algorithms particularly centralized (scheduling) and competitive approaches
- Greater scale testing
- Tweaking of algorithms

Questions? Thank you.

