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I. INTRODUCTION

In the past few decades, the development of relatively af-
fordable, useful electronic devices has increased their usage
manifold all across the globe. This extensive usage has led
to a surge in the production of electronic waste (eWaste).
Such waste has deleterious effects on neighboring areas due
to the extremely high concentrations of Mercury, Lead, and
Cadmium. According to the United Nations Environment
Programme, less than 20% of eWaste is recycled formally.
A large chunk of this waste is dumped in landfills, which are
increasing in number by the day. Due to the stringent envi-
ronmental regulations, the cost of recycling eWaste exceeds
the revenue generated. A more meticulous approach is needed
to transform this into a viable industry. The distribution of
such waste differs from region to region based on a plethora
of factors, including geography, demographics, and economy.
Simply trying to extract useful components in a desultory
fashion is a long-drawn and futile effort. It is imperative
that we discern which landfills contain the largest amount of
”useful” eWaste and allocate resources to extract the maximum
amount of resources from those wastelands. To determine how
to channel resources optimally, we develop a technique to
monitor and eventually, over time, predict which regions are
likely to produce and, thus, which landfills are more likely to
have a large proportion of eWaste. If this can be achieved,
we can prevent not only land pollution but also air pollution
caused due to the incineration of such materials. We discuss
our method to obtain the best distribution below.

II. METHOD

We need to account for the following factors whilst attempting
to prepare a model to quantify the useful materials extracted
from a landfill and decide on the future allocation of resources
to recover material from a given landfill:
1] Mean cost of a given weight and volume of waste analyzed
per day 2] Distance and transportation costs to and from
the landfill per day 3] Mean daily revenue from plastic
and metals recovered 4] Mean daily revenue from precious
metals recovered 5] Cost recovery from arrangements with
governments or conglomerates
Let the above parameters be modelled by cw, ct, cp, cpm, cg .
d is the distance between the plant and the landfill. The net

revenue per day can be obtained from a linear combination of
the above parameters. Thus, we define

cnet = w1cw + w2ct + w3cp + w4cpm + w5cg

= w1cw+w2f1(cw, d)+w3f2(cw)+w4f3(cw)+w5f4(cw)+cross terms

This is the expression of net revenue per day from a par-
ticular landfill. w1 and w2 are negative vacuously. Subject to
these constraints, we use the following Multi-Level Perceptron
Model to simulate the situation. Let c ∈ R5 and cnet ∈ R.
Define an m× 5 weight matrix W1. Let

y = W1c

On applying a sigmoid activation function g(a) = 1
1+e−a , we

get
z = g(W1c)

such that the function g applies on each entry individually.
Now, define a 1×m weight matrix W2. Our prediction

ĉnet = W2z

We now define a loss function

L =

n∑
k=1

(ĉnet, k − cnet, k)
2

where n is the number of data points already available.
We apply stochastic gradient descent to find the entries
of the matrices W1 and W2 with step size η, until
|L(t) − L(t+1)| < ϵ. Here, we already know the functions
f1, · · · , f4 since these more or less remain the same as long
as the method of recovering materials from waste is the
same. However, w1 through to w4 and then the coefficients
for the (m − 4) cross terms need to be determined. These
are nothing but the entries of W1. We use W2 to account
for various demographic factors such as the population,
access to modern technology, and per capita income of
the region to determine how likely it is that a landfill
near that region will contain a certain amount of eWaste.
This varies from place to place based on the factors
mentioned previously. Thus, based on the data available,
we determine the above weights. Now, we have a model to
predict that, given a new landfill, will the revenue generated



be sufficient to justify collecting and recycling eWaste from it.

We define the efficiency with respect to a given landfill
η = cnet

cw+ct
The overall procedure now works as follows:

1) Transportation costs are affine functions of distance and
are least for road transport until some distance between
the landfill and the plant (say, D1). From D1 to a distance
D2, rail is the cheapest mode, and beyond that, inland
water transport is the way to go. Based on the availability
of these modes, we have f1(cw, d).

2) Analysis cost depends on the extraction process. First,
we use a VCG 19 model as shown in [2] or [5] to
categorize waste as electronic and non-electronic and then
use robots to separate waste into these two categories.
This involves mechanical separation- disassembly of elec-
tronic products (for which companies like Apple already
have robots), followed by shredding and pulverization.
Finally, a cascade of liquid-based sorting, electrostatic
and magnetic separation is used. Now, pyrometallurgy
and electrorefining are used to extract metals and precious
metals. Smelting may be done within the same plant or
be outsourced. The cost of this entire process is cw.
We try to localize the model used by [4] Thus, we have

ELX =
(cd + cr)EX

PX
=

(cw)EX

PX

Where ELX is the environmental load per capita for that
given region and PX is the population for that region.

3) Here, plastic and metals can be recovered directly and
sold, or they can be directly converted to self-powered
portable electronics as depicted in [3] either within the
same plant (thus, it’ll be subsumed in f2(cw)) or in
association with another plant where it’ll be included
in f4(cw). The percentages of non-precious metals re-
covered can be found in Table 1. (taken from [6]).
Furthermore, we can categorize whether certain items
contain a particular type of eWaste (say, a PCB of a
specific category) by using a matrix:

M =


M1

M2

...
Mk

 =


m11 m12 · · · m1n

m21 m22 · · · m2n

...
... · · ·

...
mk1 mk2 · · · mkn


where M1 through to Mk are the various metals and mij

denotes a product containing metal i.
4) The percentage of precious metals contained in eWaste

can be found in Table 2. (taken from [6]). From this, we
can determine f3(cw). PCBs contain a majority of the
precious metals in eWaste and are thus used to depict the
relations we wish to establish.

5) In terms of the eWaste recycled, collaborations between
the recycling firms and the government, including con-
tracts with certain sustainability goals, can work as great
incentives for these firms. Furthermore, deals with pri-

PCB Cat. Metal Content
Tin Nickel Copper

1 1.49% 0.07% 13%
2 2.70% 0.11% 11%
3 0.69% 1.13% 20%
4 0.73% 0.26% 17.25%

TABLE I
METAL CONTENT IN DIFFERENT PCB CATEGORIES

PCB Cat. Precious Metal Content
Silver Gold Palladium

1 0.01% 0.003% 0.003%
2 0.02% 0.002% 0.001%
3 0.17% 0.04% 0.01%
4 0.08% 0.01% 0.002%

TABLE II
PRECIOUS METAL CONTENT IN DIFFERENT PCB CATEGORIES

vate corporations who produce goods containing possible
eWaste could be struck. They can then reuse the recycled
goods obtained from their own products, which will help
create a circular economy. We model the revenue from
such deals by f4(cw). This varies from company to
company and will thus help generalize our model even
better.

III. CONCLUSION

On being able to effectively train our model, we can determine,
with a high degree of certainty, where a new landfill should be
created, given we know the location of the eWaste processing
plant. Not only this, we will be able to possibly remove certain
landfills from which eWaste is recovered, if the efficiency
is too low, and find out newer landfill locations for the
corresponding representative population. As we attempt to
edge towards a more sustainable and circular economy, the
method proposed contributes to the global eWaste dilemma,
which has progressively gotten worse, especially over recent
years. The model parameters can be continuously fine-tuned
with the incorporation of real-time data. This effort should go
a long way in finally attaining a sustainable eWaste Manage-
ment system which leads to holistic societal development and
provides benefits to various factions of society.
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