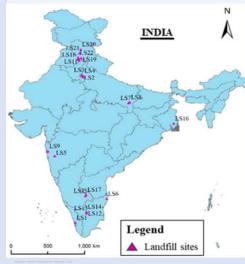
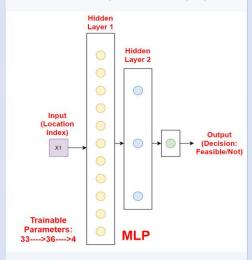
E-Waste Conversion Efficiency Tracking System for Landfill Creation to Optimize Resource Allocation for Recycling


Anirudh Dash
Indian Institute of Technology, Hyderabad

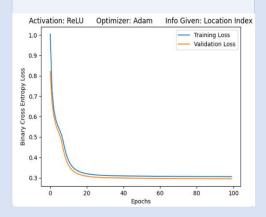
INTRODUCTION


- ☐ The development of affordable electronic devices has considerably increased E-waste
- ☐ Mismanagement of E-Waste leads to land, water, and air pollution
- □According to the UNEP, less than 20% of E-Waste is recycled formally
- ☐Currently, not a viable industry from an economic stand-point
- □Distribution of waste (and its content) varies based on geography, demographics, local economy

OBJECTIVES

- □To determine how to channel resources optimally so that most of the E-Waste generated by a region can be recycled and reused
- ☐ To do so, we must prepare a model which can determine, given a new landfill, the revenue generated, and whether that justifies collecting and recycling E-Waste from it

MATERIALS AND METHODS


- □We generate the dataset based on the locations of E-Waste Processing Plants and a combination of the following factors: Extraction cost, Transportation Cost, Revenue from plastic and metals, Revenue from precious metals, Revenue from Govt. Collaborations
- We develop an MLP model to predict whether a location is feasible for a new landfill
- □We use 2 layers, the first for determining weights of coarse features such as costs and the second for determining finer features such as demographics and feasibility of the location
- ☐We use a training-testing split of 80-20 and a validation split of 0.2
- □We choose the optimizer which gives the best performance, even on a low number of epochs, along with the best corresponding activation function: This turns out to be (Adam, ReLU)

Optimizers Analyzed	Act. Funcs Analyzed
Adam	Sigmoid
AdaGrad	ReLU
Adamax	tanh
Adadelta	softmax
RMSProp	
Nadam	

All the above was for binary cross entropy loss- classifying whether a new landfill at a given location is feasible. We can also determine the mean squared error with respect to actual estimated revenue. Turns out, the same optimizer-activation combination gives the best performance

RESULTS

- ☐ If we provide the location index, along with the precious metal recovery cost and feasibility index:
- ➤ The accuracy of prediction is 97.25%
- > The r2 score is 0.98
- > There is no overfitting of data
- ➤ All of this is achieved within 10 epochs
- Providing any more data on the cost parameters significantly improves all results

- ☐ If we provide just the location index:
- ➤ The accuracy of prediction is 87.25%
- > The r2 score is 0.9
- > There is no overfitting of data
- ➤ All of this is achieved within 100 epochs
- ☐ Efficiency index = Net revenue/ Cost Incurred (The solution is feasible if the index crosses a certain threshold)

CONCLUSIONS

- We have successfully created an MLP model which is able to predict, with reasonable accuracy, the feasibility of a location to be a landfill site
- ☐ There is some scope for improvement in terms of accuracy in the case of just providing the location and determining the feasibility of a location
- ☐ Finally, we can use an RNN to predict which regions will eventually need landfills based on the rate of population growth and access to technology

REFERENCES

- N.G. Resmi, K.A. Fasila: E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries
- Yinghao Chu, Chen Huang, Xiaodan Xie, Bohai Tan, Shyam Kamal, and Xiaogang Xiong: Multilayer Hybrid Deep-Learning Method for Waste Classification and Recycling
- M. U. Bukhari, A. Khan, K. Q. Maqbool, A. Arshad, K. Riaz, A.Bermak: Waste to Energy: Facile, Low-Cost and Environment-Friendly Triboelectric Nanogenerators Using Recycled Plastic and Electronic Wastes for Self-Powered Portable Electronics
- ☐ Wan-Dong Yang, Qing Sun, Hong-Gang Ni Costbenefit analysis of metal recovery from e-waste: Implications for international policy
- ☐ Precious metals recovery from e-waste". Emew https://blog.emew.com/precious-metals-recoveryfrom-e-waste (accessed Dec. 12, 2023)

