Developing a Collision Avoidance Quadcopter By Cameron Robinson

Project Overview

- Custom building a quadcopter and remote control
- Drone frame and controller shell (3D printed)
- Drone and controller software
- Developing collision avoidance algorithm
- Quadcopter uses a 2D LiDAR to detect surrounding obstacles and avoids any it senses it will collide with

Part Name	Туре
NUCLEO-H755ZI-Q	MCU Dev Board
BMI088	IMU
ICP-10111 Pressure Sensor	Altimeter
F405 V3 50A 4in1 ESC	ESC
NRF24L01+PA+LNA	Radio
ILI9341 2.8" SPI TFT LCD	LCD
FHL-LD19	2D LIDAR
2212 920KV BLDC Motor	BLDC Motor
HRB 4S 4200mAH LiPo	Battery
LIDAR07	Rangefinder
1045 Carbon Fiber Propellers	Propellers
NylonG	Nylon + Glass Fiber Filament
NylonX	Nylon + Carbon Fiber Filament
URGENEX 7.4V LiPo	Battery

Custom Drone Frame

- Fully 3D-printable
- Physically testing the flight controller and collision avoidance is almost guaranteed to result in accumulated damages to the drone

Collision Avoidance Algorithm

Three Parts:

- Obstacle detection, hazard assessment, obstacle avoidance
- Area around drone is divided into sectors bounded a minimum distance objects can be to the drone
- Each sector is assigned a PID controller that controls the distance between the drone and closest object in each sector
- PID controllers only have a non-zero output if the objects are closer than the minimum allowable distance
- Current implementation is extremely simplified. More complexity will be added as the algorithm is developed:
 - Velocity and angle adjustments
 - Path planning

A 3D-printed frame allows for quick repairs
New parts can be recreated in a matter of hours

Engineering Challenges Most significant issue has

 Most significant issue has been tuning and stabilizing the flight controller

Drone pitch angle controller oscillates out of control instead of stabilizing its angle adjustments Redesigned the drone's frame Made assembly easier ightarrowMoved props closer to drone's center of mass Low-Pass Filtering Motors create a lot of noise, especially in IMU