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Biological ion channel-
inspired ionomers

Nature-Inspired Polymers

Bringing the capabilities of ion channels, transporting nutrient ions in living systems,
to the design of synthetic polymers to transport ions faster  

Biological ion channels 



5Plant-based polymers

Plant-based Polymers

Bringing the capabilities of plant cell wall components
to the design of green, low-cost, but efficient polymers

Funded by: 
NSF-CBET (Electrochemical Systems)
NCESR (NPPD)

Plant-based wastes

Forest/Ag residue



Biomass Valorization to Support Bioeconomy 

Biomass sources Possible Biomass production 
(tons)

Agricultural resources 150-800 million+

Timberland 32-63 million

Waste and By-product 180-220 million
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Lignin-based Value-Added Products

Only a small percentage (1-2%) of this lignin is used to make 
value-added products:

- concrete additives

- carbonaceous materials

- stabilizing agents 

- Chemicals (e.g., phenols from depolymerized lignin)

- Chemical building blocks for plastics

- functional copolymers (from monolignols)

Amount of lignin produced worldwide:
- 50-70 million tons/yr by pulp and paper industries  
- 100,000-200,000 tons/yr by cellulosic ethanol plants

Delidovich et al, Chem. Rev. 2016

Epps et al, ACS Sus.Chem. Eng. 2014

Valorizing untapped, conversion process waste streams (like, lignin) and 
producing novel bioproducts that capitalize on the biomass

Our goal:
• Lignin valorization-aid in bioeconomy
• Design low-cost, efficient energy materials-aid in energy 

economy
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New Pathways towards Biomass Valorization
and Sustainable Technologies

Improve conductivity at 
electrode-catalyst interfaces

Durable Materials 
for electrochemical systems

Fight against 
antibiotic resistance

Lignin

Dishari et al. ACS Sustainable 
Chem. Eng.(2023)



Lignin-based Ionomer Binders 
for H-Fuel Cells 



Clean Energy Technologies are key to Decarbonization Efforts

Capture the CO2 emission

Tesla Daimler Truck

Transition to technologies causing no CO2 emission

Cost-Performance-Durability

U.S. Greenhouse Gas Emissions by Economic Sector 

https://www.epa.gov/ghgemissions/s
ources-greenhouse-gas-emissions

Total U.S. CO2 emission (2021): 
6,340 Million Metric Tons

Fuel Cells:
produce electricity

Batteries:
produce electricity

Electrolyzers:
produce green hydrogen

converts CO2 to valuable products

10
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Toyota Mirai

Kusoglu, A. et al. Nature Energy 2021

• A gasoline driven car emits 5 metric tons of 
CO2/yr

• By 2050, hydrogen could meet 14% of the energy 
demand in the United states and 24% of world’s 
energy needs.

• The recent roadmap of hydrogen economy 
emphasizes the need for accelerated investment 
in R&D for hydrogen production, storage, energy 
conversion and storage devices.

Million-Mile Fuel Cell Truck Consortium
     Target (2030): 25,000 h or 1-million-mile 

lifetime for long-haul trucks.

Clean Energy Devices: Cost-Performance-Durability

• Fuel cell-based cars are eco-friendly.

• Fuel cell cars are 3 times more 
expensive than gasoline-driven cars

• Cost-Performance-Durability



Proton exchange membrane fuel cell
(PEMFC)

Ionomer-catalyst interface

Anode: 2H2 → 4H+ + 4e-

Cathode: 4H+ + 4e- + O2  → 2H2O (ORR) Issues with current state-of-the-art ionomer Nafion: 

• High ion transport resistance at nanothin polymer-catalyst interface
       -  makes ORR sluggish
       - negatively impacts power performance of fuel cells

• Nafion is very expensive ($500/kg, 2018 cost projection report, DOE-FCTO)

• Nafion is fluorocarbon-based - not environment friendly.

Ionomer thin film & interfacial behavior are neither well-understood 
nor attempted to improve significantly

We need low-cost, efficient, and environment friendly ionomers.

Dishari , S. K. et al.  J .Phys. Chem. C 2019
Dishari , S. K. et al.  J .Phys. Chem. C 2018

Dishari , S. K. et al.  Macromolecules 2013

Gittleman, C. et al. Curr. Opinion Electrochem. 2019

Technical Challenges of H-Fuel Cells
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Ionomers exhibit poor conductivity in thin films

IEC ~ 0.91 meq/g
IEC ~ 1.21 meq/g

IEC ~ 1.61 meq/g
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Incorporated HPTS within ionomer films
Higher  Id/Ip  →  Higher  extent of proton conduction

Proton transport becomes weaker as the ionomer films become thinner. 13Dishari et al. J .Phys. Chem. C (2019)
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Why is ion conductivity weak in thinner films?

14
Poor phase separation in thinner films

Modestino et al. Macromolecules (2013)

Nafion film 
thickness4 nm 50 nm10 nm 160 nm

Thinner films: sorb water, but conduct protons poorly

Dishari, S. K. et al.  Cell Rep. Phys. Sci. 2023
Dishari, S. K. et al.  JACS Au 2022

Dishari, S. K. et al.  J .Phys. Chem. C 2019
Dishari, S. K. et al.  J .Phys. Chem. C 2018

Dishari, S. K. et al.  Macromolecules 2013

Based on GISAXS and fluorescence



Ion transport is weak immediate next to substrate interface

Funded by: 
NSF CAREER Award

NSF-CBET-Electrochemical Systems
3M Non-Tenured Faculty Award
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Nafion films and membranes are
exposed to humid air

Proton conduction profile

Dishari, S. K. et al.  ACS Appl. Polym. Mater. 2024
Dishari, S. K. et al.  ACS Macro Lett. 2021

Set-up for performing humidity based confocal microscopy measurements of ionomer films and membranes.

In thin film, proton conduction: 
weak near substrate interface

relatively stronger near air interface
15
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Why lignin-based ionomers?

Dishari, S.K. et al, Frontiers in Chemistry 2020
Funded by: 

NSF-CBET (Electrochemical Systems)
Nebraska Center for Energy Science Research Grant
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Dishari, S.K. et al, Frontiers in Chemistry 2020

Photographic image of 
Nafion-LS composite membrane

Lignin-based ionomers offer ionic conductivity higher than 
Nafion in thin films
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Dishari, S.K. et al, Frontiers in Chemistry 2020

Nafion Kraft LS 1.6 Kraft LS 3.1

High water uptake does not necessarily lead 
to high proton conductivity
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Water uptake is not directly correlated to proton 
conductivity of ionomer thin films
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Polymer IEC
Density (g/cc)

Film thickness
(~250 nm)

Film thickness 
(~25 nm)

Nafion 0.91 1.89 1.71

S-Radel 2.5 1.45

Kraft lignin (LS) 1.6 1.29 1.07

Kraft lignin (LS) 3.1 1.06 0.92

Lignin-based ionomer films are less dense
in agreement with 

3D hyperbranched architecture of lignin 
which leaves free spaces 

within macromolecular ionomer structure.

Dishari , S. K. et al.  J .Phys. Chem. C 2018
Dishari, S.K. et al, Frontiers in Chemistry 2020 0 20 40 60 80 100
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LS 1.6 film (230 nm) LS 3.1 film (230 nm)Nafion film (251 nm)
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Model Parameters Nafion LS 1.6 LS 3.1

Core-shell 

(spherical)

Average diameter (2r) (nm) 1.85 10.50 8.95

Oblate spheroid 

(ellipsoid)

Average diameter (2r) (nm) 1.55 7.50 6.00

Aspect ratio (a) 1.00 5.50 4.50

Length of long axis (2ar) (nm) 1.55 41.25 27.00

Morphological Features of LS vs Nafion films

r
2ar

Spheroid

 (oblate) 
Core-shell 

(spherical) 

r

Ionic domain size: LS 1.6 > LS 3.1> Nafion

Ionic domains are larger in LS films
as compared to Nafion films 

LS films had ellipsoidal features 
Nafion films were featureless
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• We innovated a novel range of ionomer using lignin to address and overcome the ion transport 
limitations in sub-micron thick films.

• With 3-dimensional , branched architecture, lignin-based ionomers conduct ion efficiently due to larger 
ionic domains with high water mobility.

• The work demonstrates the potential of lignin-based ionomers and may lead to new ways of lignin 
valorization which can potentially aid in bio- and energy economy simultaneously.

• Lignin-based ionomers are PFAS-free.

• These ionomers can inform and guide the future design of ionomer-catalyst interfaces, highly proton-
conductive catalyst binders and permselective bulk membranes as potential substitute of Nafion for fuel 
cells, electrolyzers, batteries, and more.

Dishari, S.K. et al, Frontiers in Chemistry. 2020

Conclusion: Lignin-based Ionomeric binders

21



Green Energy using Green Materials

Link: 
https://engineering.unl.edu/news/231020
/chme/dishari_nsf_lignin/
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Designing Low-Cost, Green Polymer Electrolytes for 
High-Temperature Electrochemical Applications

using Biorenewable Lignin

Funded by: 
Edgerton Innovation Award
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High Temperature H-Fuel Cells (PEMFCs): Challenges

Attractive features of HT-PEMFCs
• Faster reaction kinetics (high energy efficiency)
• High tolerance to fuel/impurities
• Better heat and water management

LT-PEMFCs: < 80 C

 ~ 100 mS/cm at 80 C

Phosphoric acid-doped PBI (PA-PBI)
(acid-base interaction)

 ~ 120 mS/cm (80 C) 
 ~ 157 mS/cm (140 C)

HT-PEMFCs: 80-200 C

Drawbacks:
• PA leaching
• Reduced proton conductivity
• Catalyst poisoning 

Proton exchange membrane fuel cell
(PEMFC)

Anode: 2H2 → 4H+ + 4e-

Cathode: 4H+ + 4e- + O2  → 2H2O (ORR)



Approaches adopted to prevent PA leaching

covalent functionalization of 
biphosphate groups to polymer 

backbone

PBI crosslinking

Grafting polymer backbone 
with cationic groups

Incorporation of cationic 
groups in matrix

Liu G et al. Int. J. Hydrog. Energy, 
2020

Yang, J et al. J. Power Sources 2020

Arges, C G. et al. Mater.  
Adv., 2021

He, R et al. Int. J. Hydrog. Energy, 2018

Kim , S Y et al. J. Mater. Chem. A, 
2019

Arges, C G. et al. Mater.  
Adv., 2021

Wang, Z et al. Renewable Energy, 2021

Wang, Z et al. Electrochimica Acta, 2018

Arges, C G. et al. ACS Appl. 
Energy Mater., 2020

Yu, L T et al. Int. J. Hydrog. 
Energy, 2020
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Quaternary ammonium groups used now to prevent PA leaching

Wang, Z et al. Renewable Energy 2021

Bae, C et al. Energies 2020

Kim S Y, et al. Joule 2021

Yang, J et al. J. Power Sources 2020

Kim S Y, et al. J. Mater. Chem. A 2019

Binding energy between:
PA and PBI: 17 kcal/mol
PA and quaternary ammonium groups: 151 kcal/mol

26

Many of these compounds are synthetic/petroleum-derived.
Sustainability, Scalability and Disposability??
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Why lignin-based cationic polymer electrolytes?

Dishari, S.K. et al, manuscript under preparation, 2024

QAL

Polymer IEC

Lignin: GTMAC (1:1.5) 1.13

Lignin: GTMAC (1:1.7) 1.32

Lignin: GTMAC (1:2.0) 1.75



Cationic Lignin (QAL)

Within typical HT-PEMFC operation range (~100-200 C), 
QAL did not show any sign of degradation

High Thermal Stability/Durability

1H NMR:
Quaternary amine protons (-N(CH3)3

+): 
2.49-3.36 ppm in QAL

FT-IR:
1477 cm-1: C-H and C-N stretching vibration of QA 
932 cm-1: C-O stretching vibration (ether) of QA

Dishari, S.K. et al, manuscript under preparation, 2024
28
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PA-doped PBI-QAL Membranes: PA uptake

• Incorporation of cationic QAL elevated the PA uptake by the PBI-QAL composite membranes.

• The higher the QAL content was, the higher the PA doping was experienced.

• Elevated PA uptake within PBI-QAL membrane could be attributed to:

     - Porous structure of lignin offering additional void volume to capture and store more PA within 
membrane matrix than traditional PBI membranes

    - Strong ion-pair interaction between cationic QAL and anionic phosphate of PA.
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Dishari, S.K. et al, manuscript under preparation, 2024
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PA-doped PBI-QAL Membranes: Conductivity

• PBI-QAL membranes always showed proton 
conductivity higher than pure PBI membranes.

• pure PBI membrane: 175 mS/cm 
       PBI-QAL membrane: 225 mS/cm (IEC 1.13)
                                             251 mS/cm (IEC 1.32)                            

                      264 mS/cm (IEC 1.75)

• When PBI-to-QAL ratio was varied from 1: 0.05 to 1: 0.2 
while maintaining IEC of QAL constant, proton 
conductivity increased.

• In a 240-h long stability study at 160 C, the conductivity 
of PBI-QAL membranes remained almost the same (only 
2% drop over 240 h) while maintaining consistently 
higher proton conductivity over PBI membranes 

• At a relatively lower T (130 C) at which the stability has 
been identified as an issue for PBI, PBI-QAL membranes 
showed much more stable conductivity over 240 h-
operation. 

• Cationic QAL as a low-cost, eco-friendly, stable, and 
durable alternate to synthetic cationic variants to 
enable ion-pair interactions 

Dishari, S.K. et al, manuscript under preparation, 2024
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Ion-pair interaction: 31P NMR

PA: QAL: PBI mass ratio 

1: 0.4: 0.6

1: 0.3: 0.7

1: 0.2: 0.8

1: 0.1: 0.9

1: 0.0: 1.0

A downfield shift of peaks with increasing QAL content was an indicative of 

increased ion-pair interactions between phosphate anions of PA and quaternary ammonium cations of QAL. 

Dishari, S.K. et al, manuscript under preparation, 2024



• We innovated a novel class of cationic polyelectrolyte using lignin to address and overcome PA leaching from PBI membranes in HT-
PEMFCs.

• With 3-dimensional , branched architecture of lignin and high ion-pair interaction energy, QAL elevates PA capture and retains PA 
within the membrane. This elevates the proton conductivity of membranes over extended hr of operation a high temperature.   

• QAL is PFAS-free.

• These ionomers can inform and guide the future design of membranes  for high-temperature electrochemical applications.

Conclusions: Lignin for HT-PEMFCs 
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Edgerton Innovation Award

Fighting against Antibiotic Resistance: 
Designing antimicrobial materials

33



Antibiotic-resistant bacteria

✓ Antibiotic resistant bacteria is one of the biggest health concerns.
✓ Overuse and misuse of the antibiotics has caused the emergence of antibiotic resistant bacteria.
✓ Each year (in U.S.) more than 2.8 million people are getting infected by antibiotic-resistant bacteria
✓                           and more than 35,000 people die.
✓ If no action is taken, drug-resistant diseases could cause 10 million deaths each year by 2050.

Center for Disease Control and Prevention
World Health Organization



Antibiotics to treat bacterial infections

-lactam antibiotics Aminoglycosides
PLoS Comput. Biol. 2016, 12 (6).
Front. Cell. Infect. Microbiol. 2013, 4. 

• Drug permeate into the cell and bind to 
ribosome inside the cell 

• Damage DNA bases of bacteria (E. coli)
• Inhibit protein synthesis
• Cause cell death

• Penetrate the bacteria cells through porins
• Bind to target proteins in cytoplasmic 

membrane
• Inhibit the cell wall biosynthesis
• Show bacteriolytic activity

Many Gram-negative and Gram-positive bacterial strains, 
including the ESKAPE pathogens become resistant to drugs 

by altering their outer cell envelope.
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Antimicrobial coatings

Bacterial biofilms, forming over healthcare 
equipment, are one of the major causes of 
hospital-acquired infections.

There is a growing need to develop innovative and effective 
antimicrobial coatings for medical equipment, touch surfaces, 
wound healing materials, food packaging, water supply lines and 
many more.
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Different classes of antimicrobial materials

Wang D-Y,  et al. Front. Chem. 2019, 7:872.

Renata Fialho, R., et al., Food Packag. Shelf Life, 2022 , 31

Nano-derived antimicrobials

Natural-based antimicrobials

Antimicrobial peptides (AMPs)

CPEs/OPEs

Ageitos J.M., et al. Biochem. Pharmacol., 2017 ,133,  117-138 

Whitten, D. et al. ACS Appl. Bio Mater., 2023

Cationic functionalities for non-
specific binding: bypass specific 

targeting modes

Critical barriers: 
High costs, non-abundant sources, complex 

fabrication, disposability, environmental 
sustainability

Utilization of natural and renewable 
feedstocks for the fabrication of green 

and eco-friendly antimicrobial materials 
is needed 



Plant cell wall

Lignin

Plant cell wall polymer Lignin

• 3-dimensional, hyperbranched architecture
• -OH and –OCH3 groups render antimicrobial 

properties
• Facile functionalization (-OH)-ample scope of 

cationization (Green synthesis)
• Tune the side chain structure
     - attain high antimicrobial properties
     - limit cytotoxicity to mammalian cells

Green, low-cost, naturally abundant 
bio-renewable materials

Every year, the U.S. spends ~$55 billion to handle hospital-acquired 
infections and antibiotic resistance

Lignin-based cheap, effective antimicrobials can be produced & 
made available in resource-limited, remote places

Significantly aid the remote/war-zone medical facilities 
and save lives

 

Lignin: Opportunities for antimicrobial applications
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1H NMR

31P NMR

Cationic lignin as antimicrobial material

Lignin modification to impart cationic functionalities that can 
potentially kill antibiotic-resistant bacteria

39

𝐇𝟏𝐍𝐌𝐑

Components AL 
mmol/g

QAL
mmol/g

Total phenolic -OH 4.24 0.57
Aliphatic -OH 2.33 2.35
-COOH 0.41 0.26

Phenolic –OH groups were substituted 
by quaternary amine groups

NaOH, H2O
70 C

Alkali lignin (AL) 
Norway Spruce

+

Successful 
modification

of lignin

Dishari  et al, 
ACS Sustainable.Chem. Eng. 

2023



Lignin cationization improves antimicrobial efficacy 

1-h treatment with 50 µg/mL of QAL
can kill ~ 90% of wild type and resistant bacteria (damage 4% more cells)
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Live/dead assay
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Kan-resistant E. Coli

Antimicrobial activity was substantially enhanced 
by cationization of lignin

Unmodified
Lignin

Cationic Lignin
(QAL)

(a) (b) (c)

0 g/mL QAL 25 g/mL QAL 150 g/mL QAL

Cell membranes were compromised to different extent 
upon treatment with QAL

Green: alive
Red: dead

Dishari  et al, ACS Sus.Chem. Eng. 2023
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Antimicrobial action mechanism of cationic lignin
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Bacterial lost its negative charges 
when treated with QAL

Neutralization destabilizes bacterial membrane 

Langmuir monolayer adsorption 
of QAL onto the bacterial surface

Antimicrobial process was majorly driven by 
electrostatic adsorption of the incoming QAL onto the surface of bacteria 

Dishari  et al, ACS Sus.Chem. Eng. 2023
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QAL causes membrane permeabilization
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• Inner membrane permeability of E. coli increased 
with QAL concentration nd treatment time 

• Absorbance corresponds to leakage from cytoplasm 

• Nile red dye fluoresces in lipid-rich environments

• Fluorescence intensity increases with increasing QAL 
indicating lipid exposure

• Lipid exposure corresponds to disruption of the outer 
bacterial membrane 

Nile red  staining 

Structure of 
outer 

membrane

Dishari  et al, ACS Sus.Chem. Eng. 2023
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Alterations of bacteria cell-envelope after QAL treatment
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Cell wall roughens (AFM)
QAL likely destabilizes 

the outer and inner membrane of bacteria 
due to 

electrostatic adsorption-driven bactericidal effect

Dishari  et al, ACS Sus.Chem. Eng. 2023
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QAL is not cytotoxic to human cells!

SDS-PAGE 

E. coli proteins did not 
degrade upon treatment 

Bacteria did not produce 
any protein with 
different MW

Cationic QAL was not/minimally cytotoxic against HEK293 cells: 
90–100% cell viability up to a concentration range (0–300 μg/mL) 

in which QAL achieved 100% CFU reduction

Dishari  et al, ACS Sus.Chem. Eng. 2023



Lignin: Great potential as antimicrobial

• Low cost
• Abundant raw material that allows scalability of the 

processes
• Biocompatible: not harmful against human cells
• Modifiable functional groups 
• Second most abundant natural material on earth
• Residues easy to dispose of 

Conclusions: Lignin-based antimicrobials

Applications that our science and 
materials can impact

0 50 100 150 200 250 300

0

20

40

60

80

100

C
F

U
 r

e
d

u
c
ti

o
n

 (
%

)

Polymer Concentration (µg/mL)

 QAL/wild-resistant E. coli

 QAL/kan-resistant E. coli

 AL-DMSO/wild-resistant E. coli

 AL-DMSO/kan-resistant E. coli

 AL-NaOH/wild-resistant E. coli

 AL-NaOH/kan-resistant E. coli

45



46

Conclusions

Improve conductivity at 
electrode-catalyst interfaces

Durable Materials 
for electrochemical systems

Fight against 
antibiotic resistance

Lignin

Dishari et al. ACS Sustainable 
Chem. Eng.(2023)

New Pathways towards Biomass Valorization and Sustainable Technologies



Collaborators and Funding Sources

Collaborators
Funding Sources
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Graduate Students and Post-doc

Female: 14
Underrepresented: 16

First-generation college students: 6

Undergraduate Students

Diversity Matters! Student Impact Matters! 48



Thank you! 49
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• We innovated a novel range of ionomer using lignin to address and overcome the ion 
transport limitations of sub-micron thick films.

• With 3-dimensional , branched architecture, lignin-based ionomers conduct ion efficiently 
due to larger ionic domains with high water mobility.

• The work demonstrates the potential of lignin-based ionomers and may lead to new ways of 
lignin valorization which can potentially aid in bio- and energy economy simultaneously.

• Both classes of ionomers are PFAS-free.

• These ionomers can inform and guide the future design of ionomer-catalyst interfaces, highly 
proton-conductive catalyst binders and permselective bulk membranes as potential 
substitute of Nafion for fuel cells, electrolyzers, batteries, and more.

Conclusions

Lignin-derived ionomers
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