

Sustainability Through Technology

Hot Topics

SusTech 2024 – Sustainability Forum

April 17, 2024

Maike Luiken & Carole Graas

planet 20 positive 30

Imagine The Future We Can Build Together

Some of the Initiatives led by IEEE and its Committees

IEEE Future Directions (FDC)

https://www.ieee.org/about/technologies.html
Email us at: fdc@ieee.org or c.graas&ieee.org or w.r.tonti@ieee.org

2023 - 2024 FDC Initiatives and Technical Activities Incubation to Steady State @ 10K feet

5 FDC Technical Activities

IEEE Global Semiconductor Adhoc Future Directions Industry Advisory Board اEEE پېرېرې ROADMAPS Future Tech Forum TechNav Al

Incubation

Phase 1: Coordinate across IEEE OUs

Phase 2: Implementation

Phase 3: launch

Steady State

Opportunities On AI

Topics

Greenhouse Gas Emissions Reduction

Energy System Transformation

(Green) Hydrogen

Marine Carbon Dioxide Removal (mCDR) & Measurement, Reporting, Verification (MRV)

Circular Economy

Commodity Transformation

Digital Product Passport (European Union)

Hydrogen Strategy for Canada, NRC, 2020,

https://natural-resources.canada.ca/sites/nrcan/files/environment/hydrogen/NRCan Hydrogen-Strategy-Canada-na-en-v3.pdf

Production Process		Feedstock & energy source	Pros and Cons	Examples
GREY	CO ₂	Feedstock: natural gas, gasified coal	Pros: lowest cost, abundant Cons: highest carbon intensity	Canada produces approximately 3 million tonnes of grey hydrogen per year primarily for industrial use.
	Produced by steam methane reformation without carbon capture and sequestration (CCS)			
BLUE	CQ2	Feedstock: natural gas, coal, crude bitumen	Pros: low-cost, abundant, low CI, pyrolysis offers scale and siting flexibility	Alberta's Quest project
	Produced from fossil fuels by steam methane reformation, pyrolysis or other processes with carbon capture and sequestration (CCS).		Cons: SMR pathway siting is constrained by CCUS, feedstock is not renewable	
GREEN		Feedstock: Water Energy source: Renewable electricity	Pros: lowest carbon intensity, scalable Cons: highest cost, opportunity cost - competes with electrification demand	Air Liquide's 20 MW electrolyzer plant in Becancour, Projects developing in BC to support hydrogen fueling network.
	Produced from water by electrolysis using renewable electricity such as hydroelectricity, wind or solar.			
NUCLEAR		Feedstock: Water Energy source: Uranium / nuclear electricity	Pros: low carbon intensity Cons: limited	Feasibility study planned in Bruce County.
	Produced from water by electrolysis or high temperatures from nuclear energy		availability and siting constraints	

Hydrogen Strategy for Canada, NRC, 2020, https://natural-resources.canada.ca/sites/nrcan/files/environment/hydrogen/NRCan Hydrogen-Strategy-Canada-na-en-v3.pdf

Hydrogen Strategy for Canada, NRC, 2020, https://natural-resources.canada.ca/sites/nrcan/files/environment/hydrogen/NRCan Hydrogen-Strategy-Canada-na-en-v3.pdf

Figure 3- A breakdown of the hydrogen economy showing how different energy resources and systems work together to provide decarbonized energy to various sectors [10].

Hydrogen Strategy for Canada, NRC, 2020, https://natural-resources.canada.ca/sites/nrcan/files/environment/hydrogen/NRCan Hydrogen-Strategy-Canada-na-en-v3.pdf

Figure 9 – Ranges of Estimates for Annual Global Hydrogen Demand

Hydrogen Strategy for Canada, NRC, 2020, https://natural-resources.canada.ca/sites/nrcan/files/environment/hydrogen/NRCan Hydrogen-Strategy-Canada-na-en-v3.pdf

Energy Systems Transformation: Hydrogen? Pink Hydrogen - produced from Nuclear Energy Green Hydrogen - produced from Renewable Energy

Why Hydrogen as part of the Energy Systems Transformation?

- For electricity storage
- For electricity transport
- To capture stranded (renewable) electrical power -> produce (and transport) hydrogen for:
 - Later production of electricity,
 - Direct use in industrial processes, or
 - Injection into natural gas system for heating etc. (called Power to Gas, limited %)

Consider:

- Many ways to produce hydrogen conversion losses, CO₂ production ...
- Water needs for production and/or cooling i.e. electrolysis (see Alberta: https://watersmartsolutions.ca/wp-content/uploads/2023/06/WaterSMART Hydrogen-Study Report V1.pdf)
- Potentially potable water and heat as co-products from conversion to electricity (fuel cell)
- Fugitive Hydrogen H2 is a very small molecule, hard to contain
 - Not a GHG, but Indirect impact / indirect GHG impact
 - On low Ozone layer
 - On longevity of methane in the atmosphere
- Production of water vapor ... a very potent GHG
- Hydrogen transport not simple (gas (truck or pipeline), ammonia, methane,)
- cost

Topics

Greenhouse Gas Emissions Reduction

Energy System Transformation

(Green) Hydrogen

Marine Carbon Dioxide Removal (mCDR) & Measurement, Reporting, Verification (MRV)

Circular Economy

Commodity Transformation

Digital Product Passport (European Union)

CO₂ Sequestration: mCDR

James R. Collins, Marine
Biogeochemical Scientist, EDF
Sarah R. Cooley, Director of
Climate Science, Ocean
Conservancy
Lisa Suatoni, Deputy Director
Oceans, NRDC,
Ocean Carbon Dioxide Removal
Methods, 2022
Oceans-CDR-22-12B 03 locked.pdf
(oceanconservancy.org)

CO₂ Sequestration: mCDR

CO₂ Sequestration: mCDR

Carbon removal approaches in the ocean

https://www.wri.org/insights/ocean-based-carbon-dioxide-removal

Topics

Greenhouse Gas Emissions Reduction

Energy System Transformation

(Green) Hydrogen

Marine Carbon Dioxide Removal (mCDR) & Measurement, Reporting, Verification (MRV)

Circular Economy

Commodity Transformation

Digital Product Passport (European Union)

Digital Product Passport

Wien, Novembre 22, 2023

Digital Product Passport –

Perspective of the European Commission

Ilias IAKOVIDIS

Advisor, Digital aspect of Green Transition,

DG CONNECT, European Commission

Thomas Ebert

Policy Analyst - Seconded National Expert DG

CONNECT, European Commission

Ecodesign and Energy Label for mobile phones & tablets

Ecodesign requirements

- extending the lifetime of all smartphones in the EU by one year would save 2.1 million tonnes of CO₂ per year by 2030, the equivalent of taking a million cars off the roads.
- to improve circularity (e.g. durability, reparability, refurbishment, recycling)
- resistance to accidental drops or scratches and protection from dust and water
- batteries have to retain at least 80% of initial capacity after 800 cycles
- rules on disassembly and repair, including obligations for producers to make critical spare parts available within 5-10 working days, and for 7 years
- non-discriminatory access for professional repairers to any software or firmware needed for the replacement
- availability of operating system upgrades for at least 5 years

(EU/2023/1669)

Key product value chains

Food, water & nutrients

Construction & buildings

Plastics

Batteries & vehicles

Packaging

Digital Product Passport - Expected Benefits

Tracking of **raw materials extraction/production**, supporting due diligence efforts

Benefit market surveillance authorities and customs authorities, by making available information they would need to carry out their tasks

Enable **manufacturers** to connect products' **digital twins** to their products, embedding all the information required.

Make available to public authorities and policy makers reliable information. Enable to link incentives to sustainability performance

Tracking the life story of a product, enabling services related to its remanufacturing, reparability, reuse/re-sale/second-life, recyclability, new business models

Allow **citizens** to have access to **relevant and verified information** related to the characteristics of the products they own or are considering to buy/rent (e.g. using apps able to read the identifier

European

Digital Product Passport - Design

DPP-system

DPP-data

(to be developed before DPP deployment)

(to be identified when developing productgroup specific secondary legislation)

Possible Track & Trace identifiers

- Economic operator's name, registered trade name
- Global Trade Identification Number or equivalent
- TARIC code
- Global location number
- Authorised representative
- Reference of the back-up data repository
- ..

Example of potential attributes

- Description of the material, component, or product
- Recycled content
- Substances of concern
- · Environmental footprint profile
- · Classes of performance
- Technical parameters
- •

- All standards and protocols related to the IT architecture, like standards on:
 - Data carriers and unique identifiers
 - Access rights management
 - Interoperability (technical, semantic, organisation), including data exchange protocols and formats
 - Data storage
 - Data processing (introduction, modification, update)
 - Data authentication, reliability, and integrity
 - Data security and privacy
- The DPP registry

DPP - Architecture

Decentralised system (information stays where it belongs)

Economic operator

Accessible by

- Product related data
- · Circularity/sustainability information
- Supply-chain related information
- · Certificates/manuals
- Identifiers (these go also to the registry)
- Better protection of confidential and sensitive information
- Size of a central database would be enormous and very difficult (and costly) to set up and manage
- Dynamicity of product-specific information can be better managed locally

- Unique product identifier (what)
- Unique operator identifier (who)

registry

- Unique facility identifier (where)
- · Additional information (when relevant)

- Market surveillance authorities Customs authorities via the EU Single Window Environment for Customs
- EC and Member States (statistical analyses)

DPP in Legislation

Battery regulation (<u>EU 2023/1542</u>)

From 18 February 2027 each LMT battery, each industrial battery with a capacity greater than 2 kWh and each electric vehicle battery placed on the market or put into service shall have an electronic record ('battery passport').

- Under negotiation:
- Ecodesign for sustainable products regulation (ESPR; COM/2022/142 final): see working plan (textiles and footwear, iron and steel)
- DPP and digital labelling in other proposals:
- Construction Products (<u>COM(2022) 144 final</u>); Toys (<u>COM/2023/462 final</u>); Detergence and surfactants (<u>COM(2023) 217 final</u>); Packaging (<u>COM(2022) 677 final</u>); end-of-life vehicles (<u>COM(2023) 451 final</u>)
- Critical Raw Materials Act (COM(2023) 160 final); classification, labelling and packaging (COM(2022) 748 final)

Some of the Initiatives led by IEEE and its Committees

IEEE FDC SusTech Initiative

Future Directions SusTech Initiative

A community of researchers and technologists solving the climate crisis

- Renewables Scale-up

July '23 October '23 April '24 May '24 DEEE

IEEE SA STANDARDS ASSOCIATION

- Maike Luiken
 maike.luiken@ieee.org
- John C. Havens j.c.havens@ieee.org

You are invited. Join IEEE Initiatives Today!